How mice help us to understand acute pancreatitis

In order to develop urgently needed specific medical treatment strategies for acute pancreatitis, a better understanding of the pathophysiology during the onset of acute pancreatitis is necessary. The anatomic position and relationships of the pancreas make direct observation of pancreatic pathology and biopsies difficult or almost impossible. Therefore, most of our pathophysiological concepts are based on animal studies. Several animal models of acute pancreatitis have been developed. By this, it is hoped that clues into human pathophysiology become possible.

Major progress has been made with the employment of molecular biology techniques. With the sequencing of the mouse genome, various strategies are possible to prove a causal effect of a single gene or protein, using either gain-of-function (i.e., overexpression of the protein of interest) or loss-of-function studies (i.e., genetic deletion of the gene of interest). The availability of transgenic mouse models and gene deletion studies has clearly increased our knowledge about the pathophysiology of acute pancreatitis and enables us to study and confirm in vitro findings in animal models.

In addition, transgenic models with specific genetic deletion or overexpression of genes help in understanding the role of one specific protein in a cascade of inflammatory processes such as pancreatitis, where different proteins interact and co-react.

Two papers published in the journal Digestion give an overview of the current state of research, as well as the problems and questions still to be investigated.

Media Contact

Carla Holmes alfa

More Information:

http://www.karger.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors