Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A close look at catalysis by gold

23.06.2006
In recent years, gold has received more and more attention as a catalyst. ETH researchers have determined a possible reaction mechanism in these highly active catalysts, of the activation of oxygen on gold nano-particles. These results were obtained by using state-of-the-art time-resolved and high energy-resolution fluorescence detected X-ray spectroscopy on catalysts under reaction conditions.

Catalysis by gold has received considerable attention in recent years. Particles of gold have been reported to be very active in various oxidation reactions. The particle size greatly influences the catalytic activity of gold particles and with decreasing particle size, the activity increases. Moreover, the type of support also affects the catalytic activity. One example of a reaction with gold catalysts is the CO oxidation in presence or absence of hydrogen, which is relevant for the use of hydrogen in fuel cells. Regarding the mechanism, one of the main questions is how oxygen is activated on the catalyst. Jeroen A. van Bokhoven of ETH Zurich's Institute for Chemical and Bio-Engineering and colleagues at the ESRF, Grenoble, and the University of Southampton have now identified a possible reaction mechanism for the oxidation of CO over the gold particles in supported gold catalysts. The research results have been published in "Angewandte Chemie".

How gold activates the oxygen

The researchers studied gold supported on the nonreducible support Al2O3 and observed a reaction channel that has partially oxidized gold as reaction intermediate. Charge transfer from a reduced gold particle to oxygen activates the oxygen molecule. The researchers propose that reduced gold in small particles has the unique ability to transfer electrons to oxygen. A small fraction of the surface atoms are oxidized and are essential for high catalytic activity for oxidation of CO. The thermodynamic redox behaviour of small gold particles is distinctly different from that of bulk gold, which is inert. The difference likely originates from the different electronic properties of the small gold particles, which contain a large fraction of coordinatively unsaturated atoms with corner and edge positions. The latter have more d-electrons, which are additionally shifted towards the Fermi-level, than atoms in bulk gold. The electronic changes in nano-particles lead to stronger metal-adsorbate bonding and higher reactivity. Exposure of the gold-activated oxygen to CO rapidly forms CO2 and with re-reduction to metallic gold completing the catalytic cycle. Kinetic analysis of the individual reaction steps indicates that reduction is much faster than the re-oxidation and the rate-limiting step is the activation of oxygen on the gold surface.

Valuable tool in determining the structures of catalysts

For their experiments Jeroen A. van Bokhoven and colleagues combined in-situ time-resolved and in-situ high energy-resolution fluorescence detected X-ray spectroscopy. This method is likely to become a valuable tool in determining the structures of catalysts under catalytically relevant conditions. Combining high energy-resolution data with time-resolution and the possibility of in-situ measurement in combination with mass spectrometry at synchrotrons make it a promising tool in determining the structures of catalytically active sites.

Further information
Jeroen A. van Bokhoven
Institute for Chemical and Bioengineering
Phone +41 44 63 25542
Fax +41 44 63 21162
j.a.vanbokhoven@chem.ethz.ch
Original paper
Van Bokhoven J.A. et al, Activation of Oxygen on Gold-Alumina Catalysts:
In-situ High Energy-Resolution Fluorescence and Time-resolved X-ray Spectroscopy, Angewandte Chemie, early view

Beatrice Huber | idw
Further information:
http://dx.doi.org/10.1002/anie.200601184
http://www.ethz.ch

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>