Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A close look at catalysis by gold

In recent years, gold has received more and more attention as a catalyst. ETH researchers have determined a possible reaction mechanism in these highly active catalysts, of the activation of oxygen on gold nano-particles. These results were obtained by using state-of-the-art time-resolved and high energy-resolution fluorescence detected X-ray spectroscopy on catalysts under reaction conditions.

Catalysis by gold has received considerable attention in recent years. Particles of gold have been reported to be very active in various oxidation reactions. The particle size greatly influences the catalytic activity of gold particles and with decreasing particle size, the activity increases. Moreover, the type of support also affects the catalytic activity. One example of a reaction with gold catalysts is the CO oxidation in presence or absence of hydrogen, which is relevant for the use of hydrogen in fuel cells. Regarding the mechanism, one of the main questions is how oxygen is activated on the catalyst. Jeroen A. van Bokhoven of ETH Zurich's Institute for Chemical and Bio-Engineering and colleagues at the ESRF, Grenoble, and the University of Southampton have now identified a possible reaction mechanism for the oxidation of CO over the gold particles in supported gold catalysts. The research results have been published in "Angewandte Chemie".

How gold activates the oxygen

The researchers studied gold supported on the nonreducible support Al2O3 and observed a reaction channel that has partially oxidized gold as reaction intermediate. Charge transfer from a reduced gold particle to oxygen activates the oxygen molecule. The researchers propose that reduced gold in small particles has the unique ability to transfer electrons to oxygen. A small fraction of the surface atoms are oxidized and are essential for high catalytic activity for oxidation of CO. The thermodynamic redox behaviour of small gold particles is distinctly different from that of bulk gold, which is inert. The difference likely originates from the different electronic properties of the small gold particles, which contain a large fraction of coordinatively unsaturated atoms with corner and edge positions. The latter have more d-electrons, which are additionally shifted towards the Fermi-level, than atoms in bulk gold. The electronic changes in nano-particles lead to stronger metal-adsorbate bonding and higher reactivity. Exposure of the gold-activated oxygen to CO rapidly forms CO2 and with re-reduction to metallic gold completing the catalytic cycle. Kinetic analysis of the individual reaction steps indicates that reduction is much faster than the re-oxidation and the rate-limiting step is the activation of oxygen on the gold surface.

Valuable tool in determining the structures of catalysts

For their experiments Jeroen A. van Bokhoven and colleagues combined in-situ time-resolved and in-situ high energy-resolution fluorescence detected X-ray spectroscopy. This method is likely to become a valuable tool in determining the structures of catalysts under catalytically relevant conditions. Combining high energy-resolution data with time-resolution and the possibility of in-situ measurement in combination with mass spectrometry at synchrotrons make it a promising tool in determining the structures of catalytically active sites.

Further information
Jeroen A. van Bokhoven
Institute for Chemical and Bioengineering
Phone +41 44 63 25542
Fax +41 44 63 21162
Original paper
Van Bokhoven J.A. et al, Activation of Oxygen on Gold-Alumina Catalysts:
In-situ High Energy-Resolution Fluorescence and Time-resolved X-ray Spectroscopy, Angewandte Chemie, early view

Beatrice Huber | idw
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>