Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to preserve rhino sperm?

22.06.2006
Catherine Reid has chosen a rather unusual topic for her doctoral thesis: The young veterinary from the United States investigates different ways of preserving rhino sperm. She is part of the team of Dr. Thomas Hildebrandt at the Leibniz Institute for Zoo and Wildlife Research. His group, together with experts from Germany, Austria and Hungary, was the first to successfully artificially inseminate a rhino. „My colleagues used fresh sperm of a male rhino that lived in the same zoo “, says Reid. Thus, the fertility of the sperm cells was not impaired.

Catherine Reid’s task, supervised by team member Dr. Robert Hermes, is to look for new ways to preserve rhino sperm so that it can be used after months of preservation with minimal losses of fertility. A far-fetched topic for scientific work? Not at all, stresses Catherine Reid. The cryo-conservation of rhino sperm is very important for the conservation of threatened species. Catherine Reid: „Statistics show that the reproduction rate of captive White Rhinos is only about 8 per cent.” In European zoos, 55 per cent of all female animals are in the reproductive age, but so far, only 15 per cent of these animals have reproduced; most of them only once. „These numbers show that the population is not self-sustaining”, says Reid. All the more important is a way to conserve the sperm from male rhinos.

Asked, whether the team could not continue its work with fresh sperm, Reid answers: „This would limit the breeding possibilities.“ If the team used only fresh sperm, a suitable bull – fertile and not related to the female – must be nearby. That is not always the case. So, rhinos have to be transported over far distances for breeding projects. That is expensive and risky for the animals, and the chances of success are not very large. So far, an artificial fertilization was successful only twice world wide, and natural mating is rare. Particularly worrisome: The rarest rhino species – for instance the Sumatra Rhino and the Northern White Rhino – reproduce rarely in captivity. All the more important is a successful preservation of sperm cells by freezing. Thus, the sperm could be used after the death of a bull, livestock transports for mating could be abandoned, and large distances could be bridged by sperm transport. „Additionally, we could introduce new genes from wildlife populations into the breeding programmes of zoos without taking animals from the wilderness“, says Catherine Reid.

Now, what exactly does Ms. Reid investigate? In simple words, she is studying two different methods of freezing. „You can freeze sperm cells very fast with liquid nitrogen or you can freeze cells in two steps by first cooling them gradually“, says Reid. The fast method requires small quantities of sperm and can lead to crystallization which destroys cells or impairs their fertility. Therefore, she is working, together with her colleagues and supervisors at the IZW, on a slower freezing method that avoids crystallization and that can freeze larger quantities. First, the sperm cells are cooled down to 5 degrees Celsius, then the temperature is lowered to minus 50 degrees centigrade. „Beyond that, we are testing different additives to improve the fertility of the sperm celles after thawing.“

The scientist is working in Berlin with a scholarship from the local parliament (“Abgeordnetenhaus”). Recently, she presented her research project to experts from the foundation. It convinced the experts, and the foundation called “Studienstiftung des Berliner Abgeordnetenhauses” extended the scholarship.

Josef Zens | alfa
Further information:
http://www.fv-berlin.de

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>