Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow-frozen people? Latest research supports possibility of cryopreservation

21.06.2006
The latest research on water - still one of the least understood of all liquids despite a century of intensive study – seems to support the possibility that cells, tissues and even the entire human body could be cryopreserved without formation of damaging ice crystals, according to University of Helsinki researcher Anatoli Bogdan, Ph.D.

He conducted the study, scheduled for the July 6 issue of the ACS Journal of Physical Chemistry B, one of 34 peer-review journals published by the American Chemical Society, the world's largest scientific society.

In medicine, cryopreservation involves preserving organs and tissues for transplantation or other uses. Only certain kinds of cells and tissues, including sperm and embryos, currently can be frozen and successfully rewarmed. A major problem hindering wider use of cryopreservation is formation of ice crystals, which damage cell structures.

cryopreservation may be most familiar, however, as the controversial idea that humans, stricken with incurable diseases, might be frozen and then revived years or decades later when cures are available.

Bogdan's experiments involved a form of water termed "glassy water," or low-density amorphous ice (LDA), which is produced by slowly supercooling diluted aqueous droplets. LDA melts into highly viscous water (HVW). Bogdan reports that HVW is not a new form of water, as some scientists believed.

"That HVW is not a new form of water (i.e., normal and glassy water are thermodynamically connected) may have some interesting practical implications in cryobiology, medicine, and cryonics." Bogdan said.

"It may seem fantastic, but the fact that in aqueous solution, [the] water component can be slowly supercooled to the glassy state and warmed back without the crystallization implies that, in principle, if the suitable cryoprotectant is created, cells in plants and living matter could withstand a large supercooling and survive," Bogdan explained. In present cryopreservation, the cells being preserved are often damaged due to freezing of water either on cooling or subsequent warming to room temperature.

"Damage of the cells occurs due to the extra-cellular and intra-cellular ice formation which leads to dehydration and separation into the ice and concentrated unfrozen solution. If we could, by slow cooling/warming, supercool and then warm the cells without the crystallization of water then the cells would be undamaged."

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>