Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The protein that makes you mad

21.06.2006
In recent years our feeding habits have been the focus of ongoing polemics. Everybody will remember the "mad cow" crisis when the sales of veal plummeted for fear of contagion, thousands of animals were sacrificed and beef imports, especially from the United Kingdom – the focus of the epidemic – were curtailed.

The origin of the crisis was the feeding of cattle with animal feed that was contaminated by a new pathogenic agent – a prion. These cows, after a long incubation period, died of dementia. The prion entered the human food chain without evident symptoms being observed - the pathogen was able to jump the species gap to humans. This created unprecedented alarm amongst the public at large and gave rise to great interest in these diseases - Transmissible Spongiform Encephalopathies (TSEs) and in the great protagonist of the story, the prion.

Prions are proteins – without DNA – capable of causing rare neurodegenerative diseases, currently without a cure, by means of a novel process different from that of the “classic” virus and bacteria. The prion presents two distinct forms: a “healthy” one present in all animals (PrPc) and another, pathogenic one (PrPsc) which is the causative agent of the ailment. When PrPsc enters a living being, through feeding, it looks for the PrPc as a host and transforms it into a new PrPsc. So, the PrPc disappears and the PrPsc accumulates.

Although the PrPc exists in practically all the tissues of the body, the TSEs only appear in the brain. This is why neurones die and spaces or cavities appear which give rise to the typically “spongy” appearance. What route does the prion follow from the mouth to the brain? This is the great mystery. The first obstacle it encounters is the acidity of the gastric juices, then the action of the enzymes that break up the foods we swallow and then it has to pass through the digestive tract wall. The cells containing the PrPc could be the entry gate but … what cells are they? Are the same in different animal species? Nobody knows.

Answering these questions has been the aim of this thesis and, in order to achieve this objective, we carried out a “sweep” along the digestive tract of rats, primates and of Pyrenean cows – the most affected breed in Navarre. We employed a number of techniques enabling the location of PrPc – using antibodies specifically targeting it. These antibodies, amongst other items, were marked with fluorescent molecules so the positive cells could be subsequently visualised with a microscope.

The results showed that PrPc appears in the endocrine cells that are dispersed throughout the digestive tract. Endocrine cells produce hormones, biochemical messengers that are secreted into the blood and control the correct functioning of the body. This suggests that the conversion of PrPc to PrPsc may occur in these cells and arrive at the brain in the blood. But, in the digestive tract there are dozens of different endocrine cells and not all have PrPc. To identify which ones have and which do not, we detected, simultaneously, the PrPc and another substance, characteristic of each cell type and observed if the marking appeared in the same cells or not. By means of this system we were able to confirm that, curiously, the PrPc appeared in the same cells in all three animal species.

Finally, we also detected PrPc in the nervous system of the wall of the digestive tract. In this case, the disorder may be propagated to the brain through the signals between neurones – the synapses - that link both organs.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=988

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>