Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The protein that makes you mad

21.06.2006
In recent years our feeding habits have been the focus of ongoing polemics. Everybody will remember the "mad cow" crisis when the sales of veal plummeted for fear of contagion, thousands of animals were sacrificed and beef imports, especially from the United Kingdom – the focus of the epidemic – were curtailed.

The origin of the crisis was the feeding of cattle with animal feed that was contaminated by a new pathogenic agent – a prion. These cows, after a long incubation period, died of dementia. The prion entered the human food chain without evident symptoms being observed - the pathogen was able to jump the species gap to humans. This created unprecedented alarm amongst the public at large and gave rise to great interest in these diseases - Transmissible Spongiform Encephalopathies (TSEs) and in the great protagonist of the story, the prion.

Prions are proteins – without DNA – capable of causing rare neurodegenerative diseases, currently without a cure, by means of a novel process different from that of the “classic” virus and bacteria. The prion presents two distinct forms: a “healthy” one present in all animals (PrPc) and another, pathogenic one (PrPsc) which is the causative agent of the ailment. When PrPsc enters a living being, through feeding, it looks for the PrPc as a host and transforms it into a new PrPsc. So, the PrPc disappears and the PrPsc accumulates.

Although the PrPc exists in practically all the tissues of the body, the TSEs only appear in the brain. This is why neurones die and spaces or cavities appear which give rise to the typically “spongy” appearance. What route does the prion follow from the mouth to the brain? This is the great mystery. The first obstacle it encounters is the acidity of the gastric juices, then the action of the enzymes that break up the foods we swallow and then it has to pass through the digestive tract wall. The cells containing the PrPc could be the entry gate but … what cells are they? Are the same in different animal species? Nobody knows.

Answering these questions has been the aim of this thesis and, in order to achieve this objective, we carried out a “sweep” along the digestive tract of rats, primates and of Pyrenean cows – the most affected breed in Navarre. We employed a number of techniques enabling the location of PrPc – using antibodies specifically targeting it. These antibodies, amongst other items, were marked with fluorescent molecules so the positive cells could be subsequently visualised with a microscope.

The results showed that PrPc appears in the endocrine cells that are dispersed throughout the digestive tract. Endocrine cells produce hormones, biochemical messengers that are secreted into the blood and control the correct functioning of the body. This suggests that the conversion of PrPc to PrPsc may occur in these cells and arrive at the brain in the blood. But, in the digestive tract there are dozens of different endocrine cells and not all have PrPc. To identify which ones have and which do not, we detected, simultaneously, the PrPc and another substance, characteristic of each cell type and observed if the marking appeared in the same cells or not. By means of this system we were able to confirm that, curiously, the PrPc appeared in the same cells in all three animal species.

Finally, we also detected PrPc in the nervous system of the wall of the digestive tract. In this case, the disorder may be propagated to the brain through the signals between neurones – the synapses - that link both organs.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=988

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>