Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The protein that makes you mad

21.06.2006
In recent years our feeding habits have been the focus of ongoing polemics. Everybody will remember the "mad cow" crisis when the sales of veal plummeted for fear of contagion, thousands of animals were sacrificed and beef imports, especially from the United Kingdom – the focus of the epidemic – were curtailed.

The origin of the crisis was the feeding of cattle with animal feed that was contaminated by a new pathogenic agent – a prion. These cows, after a long incubation period, died of dementia. The prion entered the human food chain without evident symptoms being observed - the pathogen was able to jump the species gap to humans. This created unprecedented alarm amongst the public at large and gave rise to great interest in these diseases - Transmissible Spongiform Encephalopathies (TSEs) and in the great protagonist of the story, the prion.

Prions are proteins – without DNA – capable of causing rare neurodegenerative diseases, currently without a cure, by means of a novel process different from that of the “classic” virus and bacteria. The prion presents two distinct forms: a “healthy” one present in all animals (PrPc) and another, pathogenic one (PrPsc) which is the causative agent of the ailment. When PrPsc enters a living being, through feeding, it looks for the PrPc as a host and transforms it into a new PrPsc. So, the PrPc disappears and the PrPsc accumulates.

Although the PrPc exists in practically all the tissues of the body, the TSEs only appear in the brain. This is why neurones die and spaces or cavities appear which give rise to the typically “spongy” appearance. What route does the prion follow from the mouth to the brain? This is the great mystery. The first obstacle it encounters is the acidity of the gastric juices, then the action of the enzymes that break up the foods we swallow and then it has to pass through the digestive tract wall. The cells containing the PrPc could be the entry gate but … what cells are they? Are the same in different animal species? Nobody knows.

Answering these questions has been the aim of this thesis and, in order to achieve this objective, we carried out a “sweep” along the digestive tract of rats, primates and of Pyrenean cows – the most affected breed in Navarre. We employed a number of techniques enabling the location of PrPc – using antibodies specifically targeting it. These antibodies, amongst other items, were marked with fluorescent molecules so the positive cells could be subsequently visualised with a microscope.

The results showed that PrPc appears in the endocrine cells that are dispersed throughout the digestive tract. Endocrine cells produce hormones, biochemical messengers that are secreted into the blood and control the correct functioning of the body. This suggests that the conversion of PrPc to PrPsc may occur in these cells and arrive at the brain in the blood. But, in the digestive tract there are dozens of different endocrine cells and not all have PrPc. To identify which ones have and which do not, we detected, simultaneously, the PrPc and another substance, characteristic of each cell type and observed if the marking appeared in the same cells or not. By means of this system we were able to confirm that, curiously, the PrPc appeared in the same cells in all three animal species.

Finally, we also detected PrPc in the nervous system of the wall of the digestive tract. In this case, the disorder may be propagated to the brain through the signals between neurones – the synapses - that link both organs.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=988

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>