Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test spares couples with familial cancer the trauma of termination

20.06.2006
A new way of sparing couples the trauma of having to decide between having a baby with a high risk of developing a form of colorectal cancer later in life, or terminating the pregnancy, will be revealed on Tuesday, 20 June 2006 at the 22nd annual conference of the European Society of Human Reproduction and Embryology in Prague, Czech Republic. Professor Stéphane Viville, director of the biology of reproduction service at Strasbourg University Hospital, Strasbourg, France, will tell the conference that, using his team’s new test, it will be possible to offer preimplantation genetic diagnosis (PGD) to almost all cases of familial adenomatous polyposis (FAP), an adult-onset cancer which represents 1% of all cases of colorectal cancer.

PGD was originally proposed for couples at risk of having a child affected by severe genetic disorders such as cystic fibrosis, which manifest themselves at birth or in very early childhood. However, it is now possible to test for some diseases that occur at a later stage in life, such as Huntington’s disease and some hereditary cancers. “Because the child will carry only a risk – albeit it a high one – of developing these conditions during adulthood, many parents, as well as clinicians, have doubts about terminating such a pregnancy,” Professor Viville says. “In fact some couples would prefer not to have children in these circumstances.”

Twelve couples with a risk of passing on FAP to any children were referred to Professor Viville and his team between 2000 and 2005. At first the team worked on tests to detect the most common FAP mutation, but then, by carrying out double and triple diagnostic tests on each cell, were able to detect the many rarer mutations that are involved in familial cases. “Because the pathology is dominant, and only one member of the couple is affected and at risk of transmitting the disease,” said Professor Viville, “we only have to look for one mutation at a time.

“But there are a number of these mutations and therefore it is necessary to develop a different test for each if we are to be sure that PGD will be effective. Our test is very robust as well as being technically innovative – for the first time in this disease we have been able to use molecular technology at the single cell level, which allows us to detect mutations that are otherwise very difficult to identify.”

The team started eleven IVF cycles, of which nine gave rise to embryo biopsy and eight had an embryo transfer. From these, one boy has been born and two other pregnancies are on-going. Reanalysis of eleven un-transferred embryos confirmed PGD results for FAP mutations.

“We are now able to propose PGD to most couples at risk of transmitting a familial form of FAP to their children”, says Professor Viville. “With our experience growing all the time, we hope that we will shortly be able to develop new protocols which will enable us to offer PGD for all mutations involved in FAP, including those which occur for the first time.”

Mary Rice | alfa
Further information:
http://www.mrcommunication.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>