Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIAI finding gives boost to bioinformatics use in fighting disease

19.06.2006
Researchers prove 95 percent accuracy in extremely complex virus

The use of computers to advance human disease research – known as bioinformatics -- has received a major boost from researchers at the La Jolla Institute for Allergy & Immunology (LIAI), who have used it to successfully predict immune response to one of the most complex viruses known to man – the vaccinia virus, which is used in the smallpox vaccine. Immune responses, which are essentially how the body fights a disease-causing agent, are a crucial element of vaccine development.

"We are excited because this further validates the important role that bioinformatics can play in the development of diagnostic tools and ultimately vaccines," said Alessandro Sette, Ph.D., an internationally known vaccine expert and head of LIAI's Emerging Infectious Disease and Biodefense Center. "We've shown that it can successfully reveal – with a very high degree of accuracy -- the vast majority of the epitopes (targets) that would trigger an effective immune response against a complex pathogen."

Bioinformatics holds significant interest in the scientific community because of its potential to move scientific research forward more quickly and at less expense than traditional laboratory testing.

The findings were published this week in a paper, "A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus," in the online version of the journal Nature Biotechnology. LIAI scientist Magdalini Moutaftsi was the lead author on the paper.

While bioinformatics – which uses computer databases, algorithms and statistical techniques to analyze biological information -- is already in use as a predictor of immune response, the LIAI research team's findings were significant because they demonstrated an extremely high rate of prediction accuracy (95 percent) in a very complex pathogen – the vaccinia virus. The vaccinia virus is a non-dangerous virus used in the smallpox vaccine because it is related to the variola virus, which is the agent of smallpox. The scientific team was able to prove the accuracy of their computer results through animal testing.

"Before, we knew that the prediction methods we were using were working, but this study proves that they work very well with a high degree of accuracy," Sette said.

The researchers focused their testing on the Major Histocompatibility Complex (MHC), which binds to certain epitopes and is key to triggering the immune system to attack a virus-infected cell. Epitopes are pieces of a virus that the body's immune system focuses on when it begins an immune response. By understanding which epitopes will bind to the MHC molecule and cause an immune attack, scientists can use those epitopes to develop a vaccine to ward off illness – in this case to smallpox.

The scientists were able to find 95 percent of the MHC binding epitopes through the computer modeling. "This is the first time that bioinformatics prediction for epitope MHC binding can account for almost all of the (targeted) epitopes that are existing in very complex pathogens like vaccinia," said LIAI researcher Magdalini Moutaftsi. The LIAI scientists theorize that the bioinformatics prediction approach for epitope MHC binding will be applicable to other viruses.

"The beauty of the virus used for this study is that it's one of the most complex, large viruses that exist," said Moutaftsi. "If we can predict almost all (targeted) epitopes from such a large virus, then we should be able to do that very easily for less complex viruses like influenza, herpes or even HIV, and eventually apply this methodology to larger microbes such as tuberculosis."

The big advantage of using bioinformatics to predict immune system targets, explained Sette, is that it overcomes the need to manufacture and test large numbers of peptides in the laboratory to find which ones will initiate an immune response. Peptides are amino acid pieces that potentially can be recognized by the immune system. "There are literally thousands of peptides," explained Sette. "You might have to create and test hundreds or even thousands of them to find the right ones," he said. "With bioinformatics, the computer does the screening based on very complex mathematical algorithms. And it can do it in much less time and at much less expense than doing the testing in the lab."

The LIAI scientific team verified the accuracy of their computer findings by comparing the results against laboratory testing of the peptides and whole infectious virus in mice. "We studied the total response directed against infected cells," Sette said. "We compared it to the response against the 50 epitopes that had been predicted by the computer. We were pleased to see that our prediction could account for 95% of the total response directed against the virus."

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org

More articles from Life Sciences:

nachricht New gene catalog of ocean microbiome reveals surprises
18.08.2017 | University of Hawaii at Manoa

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>