Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers offer clues to how leaf patterns are formed

19.06.2006
Pick up a leaf and it is hard not to notice the pattern made by the veins. For years, biologists, mathematicians and even poets and philosophers have tried to decipher the rules and regulations behind those varied designs and now new research published in part at the University of Alberta offers a big clue to how those patterns are formed.

"For years people have been trying to understand this beautiful formation," said Dr. Enrico Scarpella, from the U of A's Department of Biological Sciences. "We were able to connect the mechanism responsible for the initiation of the veins in the leaf with that of formation of the shoot and root. With our piece of the puzzle added, it indeed seems the same mechanism is responsible for all these events."

What Scarpella and his research team--Dr. Thomas Berleth's group from the University of Toronto and Dr. Jiri Friml from the University of Tuebingen--discovered has interested scientists around the world. For several years it has been known that a hormone called auxin stimulated the formation of the veins. "It was believed that auxin would behave like man--build the streets on which man himself would travel," said Scarpella. "However, the theory argued that in each individual vein auxin could only run one way at any given time, making them sort of alternate one-way streets."

By labeling the protein that transports the hormone auxin with a fluorescent tag, he could then shine a light on the leaves and watch how auxin was being transported during vein formation. Thanks to this approach, the team identified cells within individual veins that transport the hormone auxin in two opposite directions. He also showed for the first time that the epidermis of the leaf is very important in the transport of this hormone and in the formation of the veins.

One of the objections to the idea that veins might act as a channel to transport auxin was that there were mutant leaves that produced dotted, rather than continuous veins for auxin to run through. But the research team showed that the leaves with the dotted veins were a mature version and that at an earlier stage, the veins were continuous and did act as transporters. "We didn't have the technology to see those early stages before and now we do," he said. "We now know that the veins are the backbone of the leaf and are somehow responsible for the final shape of the plant."

But one of the biggest discoveries, perhaps the one with the most evolutionary implications, is that plants use the same mechanism to regulate vein formation in the leaf and branch formation on the main trunk and on the main root. The finding that the leaf is like a two-dimensional model of a tree may change the way plant scientists work, says Scarpella. "If each leaf can make more than 100 veins, you can see the process over and over compared to the formation of branches in a big, three-dimensional slowly growing tree or the difficulties in studying root branching in their natural environment, which is the dirt," he said. "Our findings will contribute to the way we will manipulate plant development to our advantage. Once we know all the players in the game we will be able to say, we want more leaves on this, more branches on this one or fewer flowers on this plant."

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>