Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells found in adult skin can be transplanted and function in mouse models of disease

16.06.2006
SickKids researchers behind new breakthrough

Researchers at The Hospital for Sick Children (SickKids) and the University of Calgary have found that stem cells derived from adult skin can create neural cell types that can be transplanted into and function in mouse models of disease. This research is reported in the June 14, 2006 issue of The Journal of Neuroscience.

SickKids researchers previously discovered what type of cells can be made from these stem cells (called skin-derived precursors, or SKPs) based on the role played by neural-crest stem cells during embryogenesis. In addition to generating the peripheral nervous system, neural crest stem cells generate other tissues such as bone, cartilage, some types of muscle, and even part of the heart.

In The Journal of Neuroscience paper, the research team found that SKPs can efficiently generate a type of glial cell, called Schwann cells, that can myelinate demyelinated axons (part of a neuron), and that have been shown to provide a good growth environment for injured central nervous system axons. These types of axons normally do not regenerate.

"Schwann cells have been proposed as a cell type for treatment of nerve injuries, demyelination disorders such as multiple sclerosis, and even spinal cord injury," said Dr. Freda Miller, the study's principal investigator, a senior scientist in Developmental Biology in the SickKids Research Institute, a professor of Molecular and Medical Genetics, and Physiology at the University of Toronto and Canada Research Chair in Developmental Neurobiology. "Our finding that we can efficiently generate and isolate these Schwann cells from SKPs raises the possibility that we could treat humans with Schwann cells derived from human skin stem cells, and perhaps even use the patient's own skin to generate Schwann cells for treatment."

The research showed that these SKP-derived Schwann cells can myelinate axons in culture, in the injured peripheral nerve, and even in the central nervous systems of mice that don't have myelin in their brains. While the research occurred in mouse models, some of their data indicate that human SKPs can do the same thing.

"Previous work has only dealt with SKPs in culture and their more basic biology. Now we have shown that SKPs can make at least one cell type that functions as predicted in animals," said Dr. Rajiv Midha, study author, a scientist at the Hotchkiss Brain Institute as well as chairman of the Division of Neurosurgery and professor and deputy head in the Department of Clinical Neurosciences at the University of Calgary. "This is the first time SKPs have been demonstrated to make bona fide neural cell types that can be transplanted into and function in animal models of disease."

Other members of the research team included Drs. Ian McKenzie, Jeff Biernaskie and Jean Toma, all from SickKids.

The next steps for the research team are to perform similar functional studies for the other cell types that they have shown are made by SKPs, including nerve cells, and to ask whether these SKP-derived Schwann cells can function in situations of human nervous system disease, such as spinal cord injury. On the basis of their findings, Dr. Miller and Dr. Wolfram Tetzlaff at the University of British Columbia have obtained a $1.5 million team grant from NeuroScience Canada's Brain Repair Program to determine whether human SKPs can be used to repair the injured spinal cord in rodents. The mission of NeuroScience Canada's Brain Repair Program is to fast-track neuroscience research in order to develop treatments and therapies more quickly.

Chelsea Gay | EurekAlert!
Further information:
http://www.sickkids.ca

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>