Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes transform 'safest' PBDEs into more harmful compounds

16.06.2006
Bacteria in the soil can transform the most commonly used flame retardant compound in the United States into more toxic forms that could be harmful to humans, according to a new laboratory study published today on the Web site of the American Chemical Society journal, Environmental Science & Technology. The study is scheduled to appear in the July 15 print issue of the journal.

The finding, by a team of environmental engineers at the University of California, Berkeley, suggests these transformations could complicate efforts to reduce or eliminate the most problematic polybrominated diphenyl esters (PBDEs) from the environment.

"This study, for the first time, establishes that microbes found in every-day settings can degrade relatively stable forms of PBDEs, making them far less stable and potentially more toxic," says Lisa Alvarez-Cohen, Ph.D., the study’s corresponding author. "It implies that current and planned bans of the most toxic forms of PBDEs may be ineffectual if the less toxic forms are rendered more toxic when released into the environment."

In laboratory animals, high blood levels of PBDE are associated with cancer, lowered immunity, thyroid problems, and learning and memory difficulties. Although PBDE levels in people haven’t reached the levels of laboratory animals, Alvarez-Cohen says scientists are concerned because they are rising in humans at an exponential rate, doubling every two to five years.

In 2004, U.S. manufacturers reached a voluntary agreement with the EPA to stop making and selling penta-BDEs and octa-BDEs, two potent forms of PBDEs linked to health problems in animals. Deca-BDE, the most commonly used form of PBDE, remains on the market because it is considered more stable and less readily absorbed into the body, Alvarez-Cohen says. Laboratory studies, however, have shown that over time, both deca- and octa-BDEs can break down into potentially more harmful forms, including penta- and tetra-BDEs.

This new study supports the notion that this process also could occur in the real world, raising concerns about the continued manufacture and use of deca-BDEs, Alvarez-Cohen says. In their study, Alvarez-Cohen and her colleagues exposed octa-BDE and deca-BDE to five types of anaerobic bacteria commonly found in the soil. Based on previous research with other compounds, they anticipated that the bacteria would break down deca-BDEs into benign components. Instead, the microbes transformed deca-BDEs into octa-BDEs and the octa-BDEs into the more harmful penta- and tetra-BDEs.

"Now that we understand that certain PBDEs found in the environment can be transformed into more toxic forms, we need to make more intelligent policy decisions with respect to how, or even if, we should use these compounds," Alvarez-Cohen says.

PBDEs are used in televisions, computers, wire insulation, upholstery and many other products containing plastic and foam. If these products overheat, PBDEs release atoms called bromines that sap oxygen from the air, preventing a fire. Over time, PBDE’s can leach into the air, soil and sediment, and move up through the food chain. These compounds have been detected in fruits and vegetables, meats, dairy products and even household dust.

The American Chemical Society — the world’s largest scientific society — is a nonprofit organization chartered by the U.S. Congress and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>