Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking a virus protection shield

16.06.2006
Ebola, measles and rabies are serious threats to public health in developing countries. Despite different symptoms all of the diseases are caused by the same class of viruses that unlike most other living beings carry their genetic information on a single RNA molecule instead of a double strand of DNA.

Now researchers from the Institut de Virologie Moléculaire et Structurale (IVMS) and the Outstation of the European Molecular Biology Laboratory (EMBL) in Grenoble have obtained a detailed structural picture of a protein that allows the rabies virus to withstand the human immune response and survive and replicate in our cells. The study that is published in this week’s online edition of Science suggests new potential drug targets in rabies and sheds light on how similar approaches can help fighting other viral diseases.

When the rabies virus enters a human cell through the membrane, the RNA molecule that carries its genes is transported into the centre of the cell. Here it redirects the cellular machinery of the host to produce many new copies of the virus that go on to infect more cells. One molecule that is crucial in this process is a viral protein called nucleoprotein. The protein ensures that on its way through the cell the virus RNA is not destroyed by the immune response of the host.

“Nucleoprotein is vital for the rabies virus,” says Rob Ruigrok, Head of the IVMS. “It is one of the few proteins that the virus brings into the host cell and it wraps around the RNA like a protection shield. Without this shield the RNA would be degraded by the enzymes of the human immune system that try to eliminate the invader.”

To investigate how exactly this protection shield works, Aurélie Albertini from Ruigrok’s team obtained crystals of nucleoprotein bound to RNA. Examining the crystals with high-intensity X-ray sources at the European Synchrotron Radiation Facility (ESRF), Amy Wernimont from Winfried Weissenhorn’s group at EMBL Grenoble produced a high-resolution image of the protein.

“Nucleoprotein acts like a clamp,” says Weissenhorn. “It consists of two domains that like two jaws clasp around the RNA strand. Many nucleoproteins bind side-by-side along the length of an RNA molecule and make it inaccessible for degrading enzymes but also for the machinery needed to replicate the virus. This means that the protection shield must be flexible and able to distinguish between different types of enzymes trying to gain access.”

The detailed structural picture suggests that upon a signal a part of the protein located between the two main domains might act as a hinge that moves the upper jaw out of the way when time for replication has come.

“This dynamic mechanism makes nucleoproteins an excellent drug target,” says Ruigrok, “Small agents that bind to the protein in such a way to block its flexibility and keep it in the closed state, would prevent replication of the virus and would stop it from spreading.”

Rabies virus shares this protection strategy with other viruses of its class; in Ebola, measles and Borna virus similar complexes of RNA and nucleoproteins have been found.

“This means that our results do not only have implications for the design of new drugs against rabies, but they suggest new therapeutic approaches in a variety of diseases, some of which are much more threatening than rabies. On a different note, the conservation of the nucleoprotein system also leaves room for evolutionary speculations about common ancestors and primordial infectious units of RNA viruses,” Weissenhorn concludes.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/aboutus/news/press/2006/16jun06/index.html

More articles from Life Sciences:

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>