Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers decorate virus particles, showing potential to enhance MRI capabilities

14.06.2006
Researchers at New York University have made chemical modifications to nanometer sized virus particles--a process that has the potential to improve magnetic resonance imaging (MRI) techniques. Their results are reported in the latest issue of Nano Letters.

The study was conducted jointly by NYU's Department of Chemistry and the Department of Radiology at the NYU School of Medicine. The study is part of a collaborative discussion group between these departments called Molecular Imaging and Contrast Agents (MICA). Contrast agents are chemical compounds that enhance the ability of medical imaging techniques, such as MRI, to discriminate between different tissue types. MICA includes Chemistry Professor James Canary, radiologist Dr. Edwin Wang, and assistant chemistry professor Kent Kirshenbaum. Assistance for the study was provided by the University of New Mexico's Department of Molecular Genetics and Microbiology at its Health Sciences Center.

The protein coats of viruses provide an attractive platform for tailoring the physical properties and functions of molecular assemblies because they contain a large number of chemically reactive groups organized in a very precise array. Other researchers have recently sought to enhance MRI capabilities through the use of similar large molecular assemblies by increasing the size, and therefore signal, of MRI contrast agents. They have also tried to use this terrain to facilitate "multi-modality," in which a set of imaging probes, such as those for both MR and optical imaging, are integrated.

The NYU researchers were able to show the attachment of a large number of gadolinium chelates--the chemical compound used in MRI contrast agents --on the surface of the viral particles. This resulted in the generation of a very intense signal when Wang imaged their samples in a clinical MRI scanner.

"Our work validates some hypotheses in the field of Magnetic Resonance Imaging contrast agents," explained Kirshenbaum, the study's corresponding author. "Previous studies have predicted that as you increase the particle size of an MR contrast agent, you should see it become more effective--as the particle takes longer to tumble in solution, it should become more capable of influencing the response of neighboring water molecules. Our study provides evidence that this effect works. Since the signal that radiologists observe in MRI scans is generated primarily from water molecules within the body, we potentially have the ability to get better contrast and clearer images that can distinguish between different tissue types."

While Kirshenbaum cautioned that many obstacles remain in using this process to enhance MRI for clinical applications, he said the results point to the potential of enhancing specific MRI capabilities.

"If a radiologist wants to design a versatile probe that can be used in a variety of different imaging protocols, a chemically modified virus particle now appears to be an attractive option for this type of sophisticated application," he noted. "For example, if we can decorate the particles so that they are recognized by specific receptors on cell surfaces, we may be able to use MRI to image tumors much smaller than can currently be seen."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>