Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers decorate virus particles, showing potential to enhance MRI capabilities

14.06.2006
Researchers at New York University have made chemical modifications to nanometer sized virus particles--a process that has the potential to improve magnetic resonance imaging (MRI) techniques. Their results are reported in the latest issue of Nano Letters.

The study was conducted jointly by NYU's Department of Chemistry and the Department of Radiology at the NYU School of Medicine. The study is part of a collaborative discussion group between these departments called Molecular Imaging and Contrast Agents (MICA). Contrast agents are chemical compounds that enhance the ability of medical imaging techniques, such as MRI, to discriminate between different tissue types. MICA includes Chemistry Professor James Canary, radiologist Dr. Edwin Wang, and assistant chemistry professor Kent Kirshenbaum. Assistance for the study was provided by the University of New Mexico's Department of Molecular Genetics and Microbiology at its Health Sciences Center.

The protein coats of viruses provide an attractive platform for tailoring the physical properties and functions of molecular assemblies because they contain a large number of chemically reactive groups organized in a very precise array. Other researchers have recently sought to enhance MRI capabilities through the use of similar large molecular assemblies by increasing the size, and therefore signal, of MRI contrast agents. They have also tried to use this terrain to facilitate "multi-modality," in which a set of imaging probes, such as those for both MR and optical imaging, are integrated.

The NYU researchers were able to show the attachment of a large number of gadolinium chelates--the chemical compound used in MRI contrast agents --on the surface of the viral particles. This resulted in the generation of a very intense signal when Wang imaged their samples in a clinical MRI scanner.

"Our work validates some hypotheses in the field of Magnetic Resonance Imaging contrast agents," explained Kirshenbaum, the study's corresponding author. "Previous studies have predicted that as you increase the particle size of an MR contrast agent, you should see it become more effective--as the particle takes longer to tumble in solution, it should become more capable of influencing the response of neighboring water molecules. Our study provides evidence that this effect works. Since the signal that radiologists observe in MRI scans is generated primarily from water molecules within the body, we potentially have the ability to get better contrast and clearer images that can distinguish between different tissue types."

While Kirshenbaum cautioned that many obstacles remain in using this process to enhance MRI for clinical applications, he said the results point to the potential of enhancing specific MRI capabilities.

"If a radiologist wants to design a versatile probe that can be used in a variety of different imaging protocols, a chemically modified virus particle now appears to be an attractive option for this type of sophisticated application," he noted. "For example, if we can decorate the particles so that they are recognized by specific receptors on cell surfaces, we may be able to use MRI to image tumors much smaller than can currently be seen."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>