Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers decorate virus particles, showing potential to enhance MRI capabilities

14.06.2006
Researchers at New York University have made chemical modifications to nanometer sized virus particles--a process that has the potential to improve magnetic resonance imaging (MRI) techniques. Their results are reported in the latest issue of Nano Letters.

The study was conducted jointly by NYU's Department of Chemistry and the Department of Radiology at the NYU School of Medicine. The study is part of a collaborative discussion group between these departments called Molecular Imaging and Contrast Agents (MICA). Contrast agents are chemical compounds that enhance the ability of medical imaging techniques, such as MRI, to discriminate between different tissue types. MICA includes Chemistry Professor James Canary, radiologist Dr. Edwin Wang, and assistant chemistry professor Kent Kirshenbaum. Assistance for the study was provided by the University of New Mexico's Department of Molecular Genetics and Microbiology at its Health Sciences Center.

The protein coats of viruses provide an attractive platform for tailoring the physical properties and functions of molecular assemblies because they contain a large number of chemically reactive groups organized in a very precise array. Other researchers have recently sought to enhance MRI capabilities through the use of similar large molecular assemblies by increasing the size, and therefore signal, of MRI contrast agents. They have also tried to use this terrain to facilitate "multi-modality," in which a set of imaging probes, such as those for both MR and optical imaging, are integrated.

The NYU researchers were able to show the attachment of a large number of gadolinium chelates--the chemical compound used in MRI contrast agents --on the surface of the viral particles. This resulted in the generation of a very intense signal when Wang imaged their samples in a clinical MRI scanner.

"Our work validates some hypotheses in the field of Magnetic Resonance Imaging contrast agents," explained Kirshenbaum, the study's corresponding author. "Previous studies have predicted that as you increase the particle size of an MR contrast agent, you should see it become more effective--as the particle takes longer to tumble in solution, it should become more capable of influencing the response of neighboring water molecules. Our study provides evidence that this effect works. Since the signal that radiologists observe in MRI scans is generated primarily from water molecules within the body, we potentially have the ability to get better contrast and clearer images that can distinguish between different tissue types."

While Kirshenbaum cautioned that many obstacles remain in using this process to enhance MRI for clinical applications, he said the results point to the potential of enhancing specific MRI capabilities.

"If a radiologist wants to design a versatile probe that can be used in a variety of different imaging protocols, a chemically modified virus particle now appears to be an attractive option for this type of sophisticated application," he noted. "For example, if we can decorate the particles so that they are recognized by specific receptors on cell surfaces, we may be able to use MRI to image tumors much smaller than can currently be seen."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>