Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental vaccine protects lab animals against several strains of H5N1

14.06.2006
Nations are preparing to stockpile vaccines against H5N1, the strain of influenza virus that experts fear could cause the next flu pandemic. But will these vaccines remain effective as the virus mutates? Researchers present good news in the July 15 issue of The Journal of Infectious Diseases, now available online.

Elena Govorkova, MD, PhD, Robert G. Webster, PhD, and coworkers at St. Jude Children's Research Hospital in Memphis, Tenn., used reverse genetics to develop an influenza virus with two key proteins on its surface derived from an H5N1 strain. They inactivated the virus and used it to vaccinate ferrets. The vaccine protected the ferrets from getting sick when exposed not only to the flu strain from which the vaccine was made, but also two other strains, including a deadly strain labeled A/Vietnam/1203/04.

Cross-strain protection is exactly what one would need, as it would protect against newly emerging variants until a strain-specific vaccine can be developed. The reverse genetics method used by the St. Jude investigators would allow rapid vaccine preparation, which is crucial in a potentially fast-moving pandemic. Other undertaken vaccine approaches have serious shortcomings. Wild-type H5N1 vaccines, for example, cannot be produced on a large scale because of their marked virulence, and vaccines based on less-virulent H5N1 strains have so far been relatively poor stimulators of immunity in human trials.

In the study, the ferrets were vaccinated intramuscularly with one or two doses of vaccine. Both schedules induced a protective antibody response, but the two-dose schedule induced higher levels of antibodies that were cross-reactive to various H5N1 viruses. Human clinical trials have seen similar results, suggesting that two doses of vaccine will be required to effectively protect against an H5N1 flu strain.

In an accompanying editorial, Alan W. Hampson, MSc, of the Australian Influenza Specialist Group, noted that the successful use of a genetically modified whole-virus vaccine that produced protective antibodies against H5N1 virus in ferrets suggests that the ferret model has the potential to provide useful information in assessing vaccines when human data alone are inadequate.

"Possibly the greatest significance of the current study, he added, "is the demonstration of a significant cross-strain protective effect," a finding that "strengthens the argument for stockpiling vaccines prepared from currently available H5N1 vaccine strains."

Steve Baragona | EurekAlert!
Further information:
http://www.idsociety.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>