Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some Genetic Research is Best Done Close to the Evolutionary Home

14.06.2006
Some aspects of evolution are like the real estate business in that it’s all about location, location, location! Researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the DOE Joint Genome Institute (DOE JGI) have shown that when it comes to comparing evolutionarily conserved DNA sequences that regulate the expression of genes, more closely related species are best.

“While one can compare distant vertebrates to humans and identify sequences that are highly evolutionarily conserved, such elements are few and far between,” said Len Pennacchio, a geneticist with Berkeley Lab’s Genomics Division and the head of JGI’s genome analysis program. “In contrast, by comparing species that are more closely related, such as other mammals, we can find much more DNA sequence alignment.”

Pennacchio and Shyam Prabhakar are the principal authors of a paper that appears in the June issue of the publication Genome Research, which presents the results of a comparative genomics study that quantified the advantages of staying close to the evolutionary home. Other co-authors of the paper were Francis Poulin, Malak Shoukry, Veena Afzal, Edward Rubin and Olivier Couronne.

When Mother Nature develops something that works, she tends to stick with it. Hence sequences of DNA that serve as protein-coding genes or enhancers that regulate the expression of those genes have been conserved through thousands of years of evolution. Gene hunters have capitalized on this tendency by comparing the DNA of different species to identify genes and determine their functions. For example, the genome of the Fugu fish contains essentially the same genes as the human genome but carries them in approximately 400 million bases as compared to the three billion bases that make up human DNA.

Cross-species DNA sequence comparisons have also been used to identify the enhancers that regulate genes – meaning they control whether a gene is switched on or off — but until now, the relative merits of comparing species as diverse as humans and fish were not known.

“To address this problem, we identified evolutionarily conserved non-coding regions in primate, mammalian and more distant species using a uniform approach that facilitates an unbiased assessment of the impact of evolutionary distance on predictive power,” said Pennacchio. “We benchmarked computational predictions against previously identified regulatory elements at diverse genomic loci, and also tested numerous extremely conserved sequences in humans and rodents for enhancer activity.”

The computational algorithm, which is used to provide a uniform evaluation of the benefits and limitations of DNA sequence comparisons between close versus distant species, was developed by Prabhakar. He dubbed this program “Gumby,” after a mathematical concept called the Gumbel distribution. Prabhakar’s Gumby program has now been incorporated into VISTA, the comprehensive suite of programs and databases for comparative analysis of genomic sequences that was developed and is maintained at Berkeley Lab.

Using the Gumby program, Prabhakar, Pennacchio and their colleagues were able to identify human regulatory DNA sequences with a sensitivity that ranged from 53 to 80 percent, and a true-positive rate that ran as high as 67 percent based on comparisons with primates and other eutherian (placental) mammals. By contrast, comparisons with more distant species, including marsupial, avian, amphibian and fish, failed to identify most of the empirically defined functional non-coding DNA sequences.

Said Prabhakar, “Our results highlight the practical utility of close sequence comparisons, and the loss of sensitivity entailed by more distant comparisons. The intuitive relationship we derived between ancient and recent non-coding sequence conservation from whole-genome comparative analysis explains most of the observations from empirical benchmarking.”

This research was supported by the National Heart, Lung, and Blood Institute, through its Program for Genome Applications.

Berkeley Lab is a U.S. Department of Energy National Laboratory located in Berkeley, CA. It conducts unclassified scientific research and is managed by the University of California. Visit our Website at http://www.lbl.gov/.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>