Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research links protein to breast-cancer migration

13.06.2006
Scientists have moved a step closer to understanding how breast cancer spreads to other parts of the body, thanks to research published this week.

The University of Manchester team has discovered a protein potentially involved in the spread or ‘metastatic progression’ of tumours.

The researchers believe their findings could lead to new approaches to treating breast cancer as blocking the protein’s actions has the potential to stop cancerous cells migrating.

“What we have identified is a new role for a protein called LPP,” explained Professor Andrew Sharrocks, who headed the research team.

“Until now, this protein was only thought to function at the cell periphery but we have shown that it works in conjunction with another protein – PEA3 – in the cell nucleus.

“PEA3 has already been implicated in the spread of breast cancer but we have found that the LPP molecule is essential for the correct function of PEA3.”

“If we can target the LPP protein and stop it from working in cancerous cells, we have a possible new route to therapy.”

The research, published in the scientific journal Molecular and Cellular Biology, may have implications for other cancer systems.

“Benign tumours remain in one part of the body and are relatively easy to treat through surgery,” said Professor Sharrocks, who is based in the University’s Faculty of Life Sciences.

“But metastases – malignant cancers that spread to other parts of the body – can be much more problematic.

“Our research is potentially fundamental to all types of cancers and has the potential to offer alternative therapies to stop cancers spreading to other organs in the body.”

News of the scientific breakthrough comes as the University announced Breast Cancer Campaign funding for two other research projects worth nearly £300,000.

Dr Andrew Gilmore, also in the Faculty of Life Sciences, has been awarded a grant of £146,000 to examine in more detail a process called ‘anoikis’.

Anoikis is the process whereby the body ambushes and kills roving cells that have gone ‘AWOL’ and are moving around the body without permission – like breast-cancer cells that spread from the breast to form tumours in other parts of the body.

Current breast-cancer treatments have been designed to kick start the anoikis process and kill these rogue cells. But the cancer cells are clever and learn how to avoid being destroyed, which means these treatments no longer work and patients often see their breast cancer return.

Dr Gilmore said: “Understanding more about how the body’s natural defences work and why breast-cancer cells can avoid them will help develop new drugs that can kill invasive cells that have become resistant to standard treatment.”

A further £143,000 has been awarded by the charity to Dr Keith Brennan, again in Life Sciences, to uncover how a group of proteins called Notch are able to protect breast-cancer cells from dying.

“Notch proteins appear to shield breast-cancer cells from the body’s natural defences and also from being destroyed by chemotherapy,” said Dr Brennan.

“This research will help to uncover exactly how Notch proteins have this effect and whether inhibiting their action may be one way of making chemotherapy treatments more effective.”

Pamela Goldberg, Chief Executive of Breast Cancer Campaign, added: “The spread of breast-cancer cells to other areas of the body is the single most important factor in breast-cancer mortality.

“When breast-cancer cells become invasive they become less responsive to treatment and the disease becomes more difficult for a clinician to manage.

“Both these studies could help to develop new drugs which kill breast-cancer cells before they have an opportunity to spread.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>