Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research links protein to breast-cancer migration

13.06.2006
Scientists have moved a step closer to understanding how breast cancer spreads to other parts of the body, thanks to research published this week.

The University of Manchester team has discovered a protein potentially involved in the spread or ‘metastatic progression’ of tumours.

The researchers believe their findings could lead to new approaches to treating breast cancer as blocking the protein’s actions has the potential to stop cancerous cells migrating.

“What we have identified is a new role for a protein called LPP,” explained Professor Andrew Sharrocks, who headed the research team.

“Until now, this protein was only thought to function at the cell periphery but we have shown that it works in conjunction with another protein – PEA3 – in the cell nucleus.

“PEA3 has already been implicated in the spread of breast cancer but we have found that the LPP molecule is essential for the correct function of PEA3.”

“If we can target the LPP protein and stop it from working in cancerous cells, we have a possible new route to therapy.”

The research, published in the scientific journal Molecular and Cellular Biology, may have implications for other cancer systems.

“Benign tumours remain in one part of the body and are relatively easy to treat through surgery,” said Professor Sharrocks, who is based in the University’s Faculty of Life Sciences.

“But metastases – malignant cancers that spread to other parts of the body – can be much more problematic.

“Our research is potentially fundamental to all types of cancers and has the potential to offer alternative therapies to stop cancers spreading to other organs in the body.”

News of the scientific breakthrough comes as the University announced Breast Cancer Campaign funding for two other research projects worth nearly £300,000.

Dr Andrew Gilmore, also in the Faculty of Life Sciences, has been awarded a grant of £146,000 to examine in more detail a process called ‘anoikis’.

Anoikis is the process whereby the body ambushes and kills roving cells that have gone ‘AWOL’ and are moving around the body without permission – like breast-cancer cells that spread from the breast to form tumours in other parts of the body.

Current breast-cancer treatments have been designed to kick start the anoikis process and kill these rogue cells. But the cancer cells are clever and learn how to avoid being destroyed, which means these treatments no longer work and patients often see their breast cancer return.

Dr Gilmore said: “Understanding more about how the body’s natural defences work and why breast-cancer cells can avoid them will help develop new drugs that can kill invasive cells that have become resistant to standard treatment.”

A further £143,000 has been awarded by the charity to Dr Keith Brennan, again in Life Sciences, to uncover how a group of proteins called Notch are able to protect breast-cancer cells from dying.

“Notch proteins appear to shield breast-cancer cells from the body’s natural defences and also from being destroyed by chemotherapy,” said Dr Brennan.

“This research will help to uncover exactly how Notch proteins have this effect and whether inhibiting their action may be one way of making chemotherapy treatments more effective.”

Pamela Goldberg, Chief Executive of Breast Cancer Campaign, added: “The spread of breast-cancer cells to other areas of the body is the single most important factor in breast-cancer mortality.

“When breast-cancer cells become invasive they become less responsive to treatment and the disease becomes more difficult for a clinician to manage.

“Both these studies could help to develop new drugs which kill breast-cancer cells before they have an opportunity to spread.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Plant escape from waterlogging
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>