Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research links protein to breast-cancer migration

13.06.2006
Scientists have moved a step closer to understanding how breast cancer spreads to other parts of the body, thanks to research published this week.

The University of Manchester team has discovered a protein potentially involved in the spread or ‘metastatic progression’ of tumours.

The researchers believe their findings could lead to new approaches to treating breast cancer as blocking the protein’s actions has the potential to stop cancerous cells migrating.

“What we have identified is a new role for a protein called LPP,” explained Professor Andrew Sharrocks, who headed the research team.

“Until now, this protein was only thought to function at the cell periphery but we have shown that it works in conjunction with another protein – PEA3 – in the cell nucleus.

“PEA3 has already been implicated in the spread of breast cancer but we have found that the LPP molecule is essential for the correct function of PEA3.”

“If we can target the LPP protein and stop it from working in cancerous cells, we have a possible new route to therapy.”

The research, published in the scientific journal Molecular and Cellular Biology, may have implications for other cancer systems.

“Benign tumours remain in one part of the body and are relatively easy to treat through surgery,” said Professor Sharrocks, who is based in the University’s Faculty of Life Sciences.

“But metastases – malignant cancers that spread to other parts of the body – can be much more problematic.

“Our research is potentially fundamental to all types of cancers and has the potential to offer alternative therapies to stop cancers spreading to other organs in the body.”

News of the scientific breakthrough comes as the University announced Breast Cancer Campaign funding for two other research projects worth nearly £300,000.

Dr Andrew Gilmore, also in the Faculty of Life Sciences, has been awarded a grant of £146,000 to examine in more detail a process called ‘anoikis’.

Anoikis is the process whereby the body ambushes and kills roving cells that have gone ‘AWOL’ and are moving around the body without permission – like breast-cancer cells that spread from the breast to form tumours in other parts of the body.

Current breast-cancer treatments have been designed to kick start the anoikis process and kill these rogue cells. But the cancer cells are clever and learn how to avoid being destroyed, which means these treatments no longer work and patients often see their breast cancer return.

Dr Gilmore said: “Understanding more about how the body’s natural defences work and why breast-cancer cells can avoid them will help develop new drugs that can kill invasive cells that have become resistant to standard treatment.”

A further £143,000 has been awarded by the charity to Dr Keith Brennan, again in Life Sciences, to uncover how a group of proteins called Notch are able to protect breast-cancer cells from dying.

“Notch proteins appear to shield breast-cancer cells from the body’s natural defences and also from being destroyed by chemotherapy,” said Dr Brennan.

“This research will help to uncover exactly how Notch proteins have this effect and whether inhibiting their action may be one way of making chemotherapy treatments more effective.”

Pamela Goldberg, Chief Executive of Breast Cancer Campaign, added: “The spread of breast-cancer cells to other areas of the body is the single most important factor in breast-cancer mortality.

“When breast-cancer cells become invasive they become less responsive to treatment and the disease becomes more difficult for a clinician to manage.

“Both these studies could help to develop new drugs which kill breast-cancer cells before they have an opportunity to spread.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>