Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cluttered Surfaces Baffle Echolocating Bats

14.12.2001


When it comes to locating a meal, insect-eating bats generally employ one of two foraging tactics: capturing prey in the air or snatching it from a substrate. Accordingly, the animals use different kinds of echolocation during these activities. Whereas aerial hunters tend toward longer calls with constant frequency, substrate-gleaning species generate short calls that sweep from low to high frequencies (FM echolocation). Less clear, however, is how effective the latter is at distinguishing the prey item from the substrate when the substrate contains clutter. Under such conditions, one would expect the background objects—leaf litter on the forest floor, for example—to produce their own echoes, which could mask those of the bat’s intended target. Now new research shows that bats have a third strategy for just this kind of tricky circumstance: they turn down the sonar and wait for the insect to reveal itself. The findings appear today in the journal Nature.



Raphaël Arlettaz of the University of Bern and colleagues studied the mouse-eared bat’s ability to obtain live and dead insects on clean and cluttered surfaces. As it turns out, the animals scored well when it came to capturing moving prey on both substrates and still prey on a smooth surface, but they labored to locate still prey on a complex surface. Additionally, the researchers found that bats attempting to pinpoint prey in the air or on smooth surfaces emitted so-called feeding buzzes. Those searching among the rubble, in contrast, emitted only faint calls or no calls at all for more than a second just before detecting prey. The scientists thus suggest that the bats listen for prey-generated sounds during this moment of silence, which would explain why they struggled to locate the dead prey in the leaf litter. "The low-intensity calls emitted during prey approach," the team writes, "may detect the immediate surroundings so the bats avoid colliding with obstacles or the ground."

According to the researchers, the study results indicate that echolocation does not provide a detailed picture of objects to substrate-gleaning bats. Indeed, when hunting among clutter, echolocation appears to render the bats "acoustically blind." This, they conclude, "suggests that FM echolocation is mainly adapted to orientation and capture of prey either in the open space or from simple backgrounds."

Kate Wong | Scientific American
Further information:
http://www.sciam.com/news/121301/3.html

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>