Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cluttered Surfaces Baffle Echolocating Bats

14.12.2001


When it comes to locating a meal, insect-eating bats generally employ one of two foraging tactics: capturing prey in the air or snatching it from a substrate. Accordingly, the animals use different kinds of echolocation during these activities. Whereas aerial hunters tend toward longer calls with constant frequency, substrate-gleaning species generate short calls that sweep from low to high frequencies (FM echolocation). Less clear, however, is how effective the latter is at distinguishing the prey item from the substrate when the substrate contains clutter. Under such conditions, one would expect the background objects—leaf litter on the forest floor, for example—to produce their own echoes, which could mask those of the bat’s intended target. Now new research shows that bats have a third strategy for just this kind of tricky circumstance: they turn down the sonar and wait for the insect to reveal itself. The findings appear today in the journal Nature.



Raphaël Arlettaz of the University of Bern and colleagues studied the mouse-eared bat’s ability to obtain live and dead insects on clean and cluttered surfaces. As it turns out, the animals scored well when it came to capturing moving prey on both substrates and still prey on a smooth surface, but they labored to locate still prey on a complex surface. Additionally, the researchers found that bats attempting to pinpoint prey in the air or on smooth surfaces emitted so-called feeding buzzes. Those searching among the rubble, in contrast, emitted only faint calls or no calls at all for more than a second just before detecting prey. The scientists thus suggest that the bats listen for prey-generated sounds during this moment of silence, which would explain why they struggled to locate the dead prey in the leaf litter. "The low-intensity calls emitted during prey approach," the team writes, "may detect the immediate surroundings so the bats avoid colliding with obstacles or the ground."

According to the researchers, the study results indicate that echolocation does not provide a detailed picture of objects to substrate-gleaning bats. Indeed, when hunting among clutter, echolocation appears to render the bats "acoustically blind." This, they conclude, "suggests that FM echolocation is mainly adapted to orientation and capture of prey either in the open space or from simple backgrounds."

Kate Wong | Scientific American
Further information:
http://www.sciam.com/news/121301/3.html

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>