Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gazelles shrink liver and heart to reduce oxygen consumption during drought

12.06.2006
How do gazelles and other large desert mammals adjust their physiology to survive when food and water are in short supply? A fascinating new study from the July/August issue of Physiological and Biochemical Zoology reveals that gazelles in the deserts of Saudi Arabia have evolved the ability to shrink oxygen-demanding organs such as the liver and heart, allowing them to breathe less. Fewer breaths reduce the amount of water lost to respiratory evaporation during prolonged periods of drought.

"We found that gazelles had the lowest total evaporative water loss ever measured in an arid zone ungulate [hoofed animal]," write Stéphane Otrowski (National Wildlife Research Center, Saudi Arabia), Pascal Mésochina (National Wildlife Research Center, Saudi Arabia), and Joseph B. Williams (Ohio State University).

Sand gazelles' livers and hearts--which are important determinants of metabolic rate--decrease significantly in mass during four months of food and water restriction. Conversely, the gut walls, which are responsible in ruminants for 28–46% of whole-body protein synthesis, an energy demanding process, did not decrease significantly in mass. There are few sources of drinking water in the desert, so sand gazelles must rely on vegetation for both food and water requirements.

"The deserts of the Arabian Peninsula are among the most austere of terrestrial environments, with low, unpredictable rainfall, and high ambient temperature," explain the authors. "The sand gazelle has evolved a remarkable capacity to reduce its evaporative water losses, which is likely a component of their success."

Unexpectedly, the researchers also found that deprived sand gazelles had a higher fat content in the brain, revealing that gazelles may store fats in the brain to secure brain metabolism during prolonged food and water deprivation.

Since 1928, Physiological and Biochemical Zoology has presented original, current research in environmental, adaptational, and comparative physiology and biochemistry.

Suzanne Wu | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>