Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gazelles shrink liver and heart to reduce oxygen consumption during drought

12.06.2006
How do gazelles and other large desert mammals adjust their physiology to survive when food and water are in short supply? A fascinating new study from the July/August issue of Physiological and Biochemical Zoology reveals that gazelles in the deserts of Saudi Arabia have evolved the ability to shrink oxygen-demanding organs such as the liver and heart, allowing them to breathe less. Fewer breaths reduce the amount of water lost to respiratory evaporation during prolonged periods of drought.

"We found that gazelles had the lowest total evaporative water loss ever measured in an arid zone ungulate [hoofed animal]," write Stéphane Otrowski (National Wildlife Research Center, Saudi Arabia), Pascal Mésochina (National Wildlife Research Center, Saudi Arabia), and Joseph B. Williams (Ohio State University).

Sand gazelles' livers and hearts--which are important determinants of metabolic rate--decrease significantly in mass during four months of food and water restriction. Conversely, the gut walls, which are responsible in ruminants for 28–46% of whole-body protein synthesis, an energy demanding process, did not decrease significantly in mass. There are few sources of drinking water in the desert, so sand gazelles must rely on vegetation for both food and water requirements.

"The deserts of the Arabian Peninsula are among the most austere of terrestrial environments, with low, unpredictable rainfall, and high ambient temperature," explain the authors. "The sand gazelle has evolved a remarkable capacity to reduce its evaporative water losses, which is likely a component of their success."

Unexpectedly, the researchers also found that deprived sand gazelles had a higher fat content in the brain, revealing that gazelles may store fats in the brain to secure brain metabolism during prolonged food and water deprivation.

Since 1928, Physiological and Biochemical Zoology has presented original, current research in environmental, adaptational, and comparative physiology and biochemistry.

Suzanne Wu | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>