Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three-Way Symbiosis Supplies Insect Pest With Well-Rounded Diet

09.06.2006
The glassy-winged sharpshooter obtains a well-rounded diet by playing nice with two bacteria species that live inside the insect's cells.

Researchers figured out the sharpshooter's nutritional secrets by analyzing the genes of the insect's symbiotic bacteria, internal hitchhikers the insect cannot live without.

The research is the first genomic analysis of an obligatory symbiotic relationship that has multiple partners.

The glassy-winged sharpshooter transmits Pierce's disease, a bacterial pathogen which is threatening California's vineyards. A few of the insects were found in the Sierra Vista, Ariz. area in 2005.

Plant-sucking insects such as sharpshooters can transmit disease as they suck the sap from plants. Knowing the genetic background of the insect's symbionts could lead to new ways to thwart the transmission of such plant diseases.

"The glassy-winged sharpshooter is one of the most important invasive insect pests in the world," said co-author Nancy A. Moran, a Regents' Professor of ecology and evolutionary biology at The University of Arizona in Tucson and a member of UA's BIO5 Institute. "This insect is really large and flies a long way, so it's a very good disease vector."

Moran and her colleagues' research article, "Metabolic complementarity and genomics of the dual bacteria symbiosis of sharpshooters," is in the June 2006 issue of the Public Library of Science Biology (PLoS Biology). A complete list of authors is at the end of this release. The research was funded by a National Science Foundation grant to Moran.

Many insects, such as aphids and cicadas, feed on the sap from pipes that transport water and food within a plant. These sap-feeders are often known to rely on resident bacteria for a balanced diet - especially the synthesis of the essential amino acids that all animals, including humans, cannot make for themselves.

Some of the sap-feeders tap into a sugar-rich type of sap known as phloem. In contrast, the glassy-winged sharpshooter, Homalodisca coagulata, taps into xylem, a sap only slightly more nutritious than flavored water.

"My initial interest in sharpshooter symbiosis was in the hope that we could find out exactly how xylem can be used as food," said Moran, an expert in the co-evolution of insects and their resident bacteria known as endosymbionts. "It's terribly poor in nutrients."

The researchers decided to figure out what nutritional goodies the sharpshooter's endosymbionts produced to supplement the water and minerals and other nutrients supplied by the xylem. To do so, researchers in Moran's lab isolated bacterial DNA from sharpshooters.

Moran recruited Jonathan Eisen of The Institute for Genomic Research (TIGR), now at the University of California, Davis, to conduct the painstaking forensic type of DNA analysis known as "metagenomics." Such analyses sequence the DNA for an organism's entire set of genes, known as the genome, and reveals what kinds of materials those genes can produce.

The team assumed that sharpshooters carried Baumannia cicadellinicola, a known endosymbiont of sharpshooters. But the analysis of genes for that bacterium revealed vitamins-making capabilities, but no genes to direct the manufacture of essential amino acids.

The researchers, wondering if some other bacteria were also present, looked back at their DNA analyses. Some of the DNA matched neither the insect nor the endosymbiont Baumannia cicadellinicola. Reviewing those bits of DNA turned up genes from another bacterium, Sulcia mulleri.

The genes from the second bacterium coded for essential amino acids.

Eisen said, "When doing this type of forensic metagenomics, some scientists suggest you can just analyze the whole system as one unit-a so-called 'black-box' approach--without knowing which piece of DNA came from which organism."

He added, "But this black-box ecology just does not work well. To really understand the system, you've got to assign the different bits of DNA to organisms. This study shows why."

The sharpshooter and the two bacteria depend on a three-way interaction. The sharpshooter channels some of the xylem's nutrients to the bacteria, which in turn feed the insect vitamins, cofactors and essential amino acids. In addition, the two bacterial species probably supply each other with needed nutrients.

The bacteria species, which live within the insect in a specialized structure called a bacteriome, are passed down from mother to daughter in the egg.

Moran said, "It's a three-way partnership. Each of the three organisms is essential to the whole."

The information in this release was prepared by Mari N. Jensen, with additional information from The Institute for Genomics Research.

Moran and Eisen's co-authors are Dongying Wu, Sean C. Daugherty, Kisha L. Watkins, Hoda Khouri, Luke J. Tallon and Jennifer M. Zaborsky of The Institute for Genomics Research in Rockville, Md.; Susan E. Van Aken and Grace H. Pai of the J. Craig Venter Institute, Joint Technology Center in Rockville, Md.; and Helen E. Dunbar and Phat L. Tran of The University of Arizona.

Mari N. Jensen | University of Arizona
Further information:
http://www.arizona.edu
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0040188

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>