Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three-Way Symbiosis Supplies Insect Pest With Well-Rounded Diet

09.06.2006
The glassy-winged sharpshooter obtains a well-rounded diet by playing nice with two bacteria species that live inside the insect's cells.

Researchers figured out the sharpshooter's nutritional secrets by analyzing the genes of the insect's symbiotic bacteria, internal hitchhikers the insect cannot live without.

The research is the first genomic analysis of an obligatory symbiotic relationship that has multiple partners.

The glassy-winged sharpshooter transmits Pierce's disease, a bacterial pathogen which is threatening California's vineyards. A few of the insects were found in the Sierra Vista, Ariz. area in 2005.

Plant-sucking insects such as sharpshooters can transmit disease as they suck the sap from plants. Knowing the genetic background of the insect's symbionts could lead to new ways to thwart the transmission of such plant diseases.

"The glassy-winged sharpshooter is one of the most important invasive insect pests in the world," said co-author Nancy A. Moran, a Regents' Professor of ecology and evolutionary biology at The University of Arizona in Tucson and a member of UA's BIO5 Institute. "This insect is really large and flies a long way, so it's a very good disease vector."

Moran and her colleagues' research article, "Metabolic complementarity and genomics of the dual bacteria symbiosis of sharpshooters," is in the June 2006 issue of the Public Library of Science Biology (PLoS Biology). A complete list of authors is at the end of this release. The research was funded by a National Science Foundation grant to Moran.

Many insects, such as aphids and cicadas, feed on the sap from pipes that transport water and food within a plant. These sap-feeders are often known to rely on resident bacteria for a balanced diet - especially the synthesis of the essential amino acids that all animals, including humans, cannot make for themselves.

Some of the sap-feeders tap into a sugar-rich type of sap known as phloem. In contrast, the glassy-winged sharpshooter, Homalodisca coagulata, taps into xylem, a sap only slightly more nutritious than flavored water.

"My initial interest in sharpshooter symbiosis was in the hope that we could find out exactly how xylem can be used as food," said Moran, an expert in the co-evolution of insects and their resident bacteria known as endosymbionts. "It's terribly poor in nutrients."

The researchers decided to figure out what nutritional goodies the sharpshooter's endosymbionts produced to supplement the water and minerals and other nutrients supplied by the xylem. To do so, researchers in Moran's lab isolated bacterial DNA from sharpshooters.

Moran recruited Jonathan Eisen of The Institute for Genomic Research (TIGR), now at the University of California, Davis, to conduct the painstaking forensic type of DNA analysis known as "metagenomics." Such analyses sequence the DNA for an organism's entire set of genes, known as the genome, and reveals what kinds of materials those genes can produce.

The team assumed that sharpshooters carried Baumannia cicadellinicola, a known endosymbiont of sharpshooters. But the analysis of genes for that bacterium revealed vitamins-making capabilities, but no genes to direct the manufacture of essential amino acids.

The researchers, wondering if some other bacteria were also present, looked back at their DNA analyses. Some of the DNA matched neither the insect nor the endosymbiont Baumannia cicadellinicola. Reviewing those bits of DNA turned up genes from another bacterium, Sulcia mulleri.

The genes from the second bacterium coded for essential amino acids.

Eisen said, "When doing this type of forensic metagenomics, some scientists suggest you can just analyze the whole system as one unit-a so-called 'black-box' approach--without knowing which piece of DNA came from which organism."

He added, "But this black-box ecology just does not work well. To really understand the system, you've got to assign the different bits of DNA to organisms. This study shows why."

The sharpshooter and the two bacteria depend on a three-way interaction. The sharpshooter channels some of the xylem's nutrients to the bacteria, which in turn feed the insect vitamins, cofactors and essential amino acids. In addition, the two bacterial species probably supply each other with needed nutrients.

The bacteria species, which live within the insect in a specialized structure called a bacteriome, are passed down from mother to daughter in the egg.

Moran said, "It's a three-way partnership. Each of the three organisms is essential to the whole."

The information in this release was prepared by Mari N. Jensen, with additional information from The Institute for Genomics Research.

Moran and Eisen's co-authors are Dongying Wu, Sean C. Daugherty, Kisha L. Watkins, Hoda Khouri, Luke J. Tallon and Jennifer M. Zaborsky of The Institute for Genomics Research in Rockville, Md.; Susan E. Van Aken and Grace H. Pai of the J. Craig Venter Institute, Joint Technology Center in Rockville, Md.; and Helen E. Dunbar and Phat L. Tran of The University of Arizona.

Mari N. Jensen | University of Arizona
Further information:
http://www.arizona.edu
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0040188

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>