Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes research takes wing thanks to long-lived fruit fly

09.06.2006
The creation of an extraordinarily long-lived fruit fly by genetics researchers at the University of Rochester has led scientists down an unexpected new path in the fight against diabetes. The mutant fly is serving as a portal for understanding the factors that determine how nutrition and stress set the foundation for metabolic syndrome and diabetes, why diabetes occurs more frequently as people age, and indeed why people live as long as they do.

Dirk Bohmann, Ph.D., and Henri Jasper, Ph.D., are focusing on a cell signaling system that responds to stress and works in tandem with the insulin receptor that is central to diabetes. They recently received $2.5 million from the National Institutes of Health to conduct the next phase of their studies.

Why spend such funds on a fly that lives 40 percent longer than the average fly? Because of its promise for human health. New findings on aging, diabetes, and stress converge on the fly the team created. Later this month Bohmann will discuss the fly's implications for aging and health at a symposium in Sweden sponsored by the Wenner-Gren Foundations and also at the exclusive International Workshop on the Molecular and Developmental Biology of Drosophila, sponsored by the European Molecular Biology Organization, in Crete.

Bohmann and Jasper showed in 2003 that boosting the amount of a molecular signal known as JNK in a fruit fly allows the fly to live 85 days instead of 60, by spurring the fly to defend itself more aggressively against the oxidative stress that accelerates with aging. Such stress comes from the same chemical process that makes cars rust in the Rochester winter: Free-wheeling molecules known as free radicals zing through materials and run roughshod over anything in their way, including vital proteins and DNA. It's a major reason why generally our bodies falter as we age – we're literally dinged to death by free radicals.

While scientists knew that JNK in a fly cranks up the anti-oxidants, helping to keep the integrity of genes and proteins intact in the same way people hope substances like vitamins C and E might, few had considered that simply boosting the amount of JNK could have such a broad impact on life span.

Then, in another surprise, Jasper and Bohmann showed that JNK targets the same protein as the widely studied insulin receptor, central to human health and to the disease process that underlies diabetes. The finding has opened up an untapped route for possibly interfering with the disease process that underlies diabetes.

"Obesity is on the rise dramatically, and after decades of increasing life span among people in the United States, there is talk that life expectancy is actually expected to fall soon, largely due to the epidemic of obesity and diabetes," said Bohmann. "It's a huge health issue. Many people have this problem – it's not going away anytime soon.

"This research isn't so much about making people to live to 120 as it is about preventing diseases like diabetes, heart disease, or Alzheimer's. We're trying to identify the mechanisms that cause damage to our body as we age, and prevent them. This has opened a new playing field for people in aging research."

The work was initially supported by the Nathan Shock Center, funded by the National Institute on Aging, and the Upstate Coalition of Aging Research. Now, Bohmann will use $1.4 million in a new five-year study exploring the relationship between JNK and the insulin receptor, while Jasper will use $1.1 million in a four-year study investigating just how much control JNK seems to wield over insulin production.

It's likely, for instance, that JNK counters the effects of the insulin receptor and inhibits the production of insulin, a crucial hormone that converts the food we eat into forms that the body can utilize. JNK detects stress in the environment and not only prepares the body to deal with insults from the environment, but also limits the amount of insulin, preparing the body for stress by slowing its metabolism and limiting its energy output. It might also offer a new way to control insulin production.

Like JNK, the insulin receptor is also involved in determining life span. Caloric restriction – limiting the calories an organism ingests – generally increases lifespan in organisms ranging from worms to flies, and maybe humans. Somehow, JNK and the insulin receptor together seem to work in tandem to affect life span.

"We're learning that an organism's life span may not be limited by design," said Bohmann. "It was once thought that people and other organisms could simply live only a certain number of years and that's it. Instead, our genes play a crucial role in determining and adjusting how long we live. Can we control this process more fully? Perhaps it's possible to re-set the body's aging clock and maybe make someone live longer."

It was Bohmann's questions about cancer-causing genes 20 years ago that led him to focus on JNK, a signaling system that plays a role not only in cancer but in many normal body processes. For several years he has worked with Jasper, using fruit flies to try to unravel the molecular signals that enable cancer cells to grow. Jasper earned his doctoral degree under Bohmann's guidance in 2002 and is now an assistant professor of Biology.

Bohmann initially studied cancer in human cells, then switched to studying fruit flies because he felt that making findings important to human health would happen more rapidly using flies, then transferring the findings to people. He notes that the same molecular signals that control how cells divide in fruit flies control how cells divide in people.

"We continue to be amazed at how similar a fruit fly is to a person," says Bohmann. "We can accomplish the same thing in fruit flies that we would only be able to do with a lot more money, taking a lot longer, in other ways. And many of these experiments could never be done in people or even mice. Working first in fruit flies speeds up the process toward finding potential treatments or cures for diseases like cancer."

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>