Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes research takes wing thanks to long-lived fruit fly

09.06.2006
The creation of an extraordinarily long-lived fruit fly by genetics researchers at the University of Rochester has led scientists down an unexpected new path in the fight against diabetes. The mutant fly is serving as a portal for understanding the factors that determine how nutrition and stress set the foundation for metabolic syndrome and diabetes, why diabetes occurs more frequently as people age, and indeed why people live as long as they do.

Dirk Bohmann, Ph.D., and Henri Jasper, Ph.D., are focusing on a cell signaling system that responds to stress and works in tandem with the insulin receptor that is central to diabetes. They recently received $2.5 million from the National Institutes of Health to conduct the next phase of their studies.

Why spend such funds on a fly that lives 40 percent longer than the average fly? Because of its promise for human health. New findings on aging, diabetes, and stress converge on the fly the team created. Later this month Bohmann will discuss the fly's implications for aging and health at a symposium in Sweden sponsored by the Wenner-Gren Foundations and also at the exclusive International Workshop on the Molecular and Developmental Biology of Drosophila, sponsored by the European Molecular Biology Organization, in Crete.

Bohmann and Jasper showed in 2003 that boosting the amount of a molecular signal known as JNK in a fruit fly allows the fly to live 85 days instead of 60, by spurring the fly to defend itself more aggressively against the oxidative stress that accelerates with aging. Such stress comes from the same chemical process that makes cars rust in the Rochester winter: Free-wheeling molecules known as free radicals zing through materials and run roughshod over anything in their way, including vital proteins and DNA. It's a major reason why generally our bodies falter as we age – we're literally dinged to death by free radicals.

While scientists knew that JNK in a fly cranks up the anti-oxidants, helping to keep the integrity of genes and proteins intact in the same way people hope substances like vitamins C and E might, few had considered that simply boosting the amount of JNK could have such a broad impact on life span.

Then, in another surprise, Jasper and Bohmann showed that JNK targets the same protein as the widely studied insulin receptor, central to human health and to the disease process that underlies diabetes. The finding has opened up an untapped route for possibly interfering with the disease process that underlies diabetes.

"Obesity is on the rise dramatically, and after decades of increasing life span among people in the United States, there is talk that life expectancy is actually expected to fall soon, largely due to the epidemic of obesity and diabetes," said Bohmann. "It's a huge health issue. Many people have this problem – it's not going away anytime soon.

"This research isn't so much about making people to live to 120 as it is about preventing diseases like diabetes, heart disease, or Alzheimer's. We're trying to identify the mechanisms that cause damage to our body as we age, and prevent them. This has opened a new playing field for people in aging research."

The work was initially supported by the Nathan Shock Center, funded by the National Institute on Aging, and the Upstate Coalition of Aging Research. Now, Bohmann will use $1.4 million in a new five-year study exploring the relationship between JNK and the insulin receptor, while Jasper will use $1.1 million in a four-year study investigating just how much control JNK seems to wield over insulin production.

It's likely, for instance, that JNK counters the effects of the insulin receptor and inhibits the production of insulin, a crucial hormone that converts the food we eat into forms that the body can utilize. JNK detects stress in the environment and not only prepares the body to deal with insults from the environment, but also limits the amount of insulin, preparing the body for stress by slowing its metabolism and limiting its energy output. It might also offer a new way to control insulin production.

Like JNK, the insulin receptor is also involved in determining life span. Caloric restriction – limiting the calories an organism ingests – generally increases lifespan in organisms ranging from worms to flies, and maybe humans. Somehow, JNK and the insulin receptor together seem to work in tandem to affect life span.

"We're learning that an organism's life span may not be limited by design," said Bohmann. "It was once thought that people and other organisms could simply live only a certain number of years and that's it. Instead, our genes play a crucial role in determining and adjusting how long we live. Can we control this process more fully? Perhaps it's possible to re-set the body's aging clock and maybe make someone live longer."

It was Bohmann's questions about cancer-causing genes 20 years ago that led him to focus on JNK, a signaling system that plays a role not only in cancer but in many normal body processes. For several years he has worked with Jasper, using fruit flies to try to unravel the molecular signals that enable cancer cells to grow. Jasper earned his doctoral degree under Bohmann's guidance in 2002 and is now an assistant professor of Biology.

Bohmann initially studied cancer in human cells, then switched to studying fruit flies because he felt that making findings important to human health would happen more rapidly using flies, then transferring the findings to people. He notes that the same molecular signals that control how cells divide in fruit flies control how cells divide in people.

"We continue to be amazed at how similar a fruit fly is to a person," says Bohmann. "We can accomplish the same thing in fruit flies that we would only be able to do with a lot more money, taking a lot longer, in other ways. And many of these experiments could never be done in people or even mice. Working first in fruit flies speeds up the process toward finding potential treatments or cures for diseases like cancer."

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>