Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA found in the cellular centrosome of surf clams

08.06.2006
Researchers at Rensselaer Polytechnic Institute, the Marine Biological Laboratory (MBL) in Woods Hole and Louisiana State University (LSU) Health Sciences Center have discovered the presence of the genetic material RNA in the centrosome, the organizing structure inside each cell that assures proper cell division.

The findings, detailed June 5 in the online early edition of the journal Proceedings of the National Academy of Sciences, present evidence that individual centrosomes within a cell may carry their own genetic material.

"Our research provides direct biochemical evidence that RNA is present in the centrosomes of clam cells," says Robert Palazzo, professor of biology and director of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer.

Palazzo’s laboratory isolated clam centrosomes and Mark Alliegro and Mary Anne Alliegro of LSU Health Sciences Center analyzed the centrosomes for RNA content.

"Although the possibility of DNA inside the centrosome of the cell has been ruled out by others’ previous work, the presence of RNA had not been confirmed or denied until now," says Palazzo. "Our results show there are at least five specific forms of RNA in the clam cell centrosome which could be related to structure, encoding of proteins, or the regulation of organism development. The specific role or function of the RNA in the centrosome and its possible involvement in the development of animals will be significant questions in continuing studies.

"Since RNA guides the translation of genes into proteins, knowing more about its role(s) in the centrosome may help researchers better understand the progression of diseases such as cancer, which has been linked to abnormal centrosome numbers in tumor cells," says Palazzo.

The study on surf clam centrosomes was initiated at the MBL, an international biological research center where scientists use locally abundant marine organisms like surf clams and their eggs as research models. Clam eggs are modeled as simple versions of human cells, and biologists who study cell division value them for several reasons, according to Palazzo. The eggs develop fast, entering the process of cell division less than 15 minutes after fertilization, and, once fertilized, divide in synch every 30-50 minutes -- providing billions of biochemically identical cells to study.

Using a purification technique Palazzo developed at the MBL, the scientists were able to isolate relatively large quantities of clam centrosomes for their research. Palazzo collaborated with Mark Alliegro and Mary Anne Alliegro during summers at the MBL.

In addition to his position as director of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer, Palazzo also holds appointments at the MBL as visiting summer researcher and at the Wadsworth Center of the New York State Department of Health as research scientist.

Tiffany Lohwater | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>