Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


RNA found in the cellular centrosome of surf clams

Researchers at Rensselaer Polytechnic Institute, the Marine Biological Laboratory (MBL) in Woods Hole and Louisiana State University (LSU) Health Sciences Center have discovered the presence of the genetic material RNA in the centrosome, the organizing structure inside each cell that assures proper cell division.

The findings, detailed June 5 in the online early edition of the journal Proceedings of the National Academy of Sciences, present evidence that individual centrosomes within a cell may carry their own genetic material.

"Our research provides direct biochemical evidence that RNA is present in the centrosomes of clam cells," says Robert Palazzo, professor of biology and director of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer.

Palazzo’s laboratory isolated clam centrosomes and Mark Alliegro and Mary Anne Alliegro of LSU Health Sciences Center analyzed the centrosomes for RNA content.

"Although the possibility of DNA inside the centrosome of the cell has been ruled out by others’ previous work, the presence of RNA had not been confirmed or denied until now," says Palazzo. "Our results show there are at least five specific forms of RNA in the clam cell centrosome which could be related to structure, encoding of proteins, or the regulation of organism development. The specific role or function of the RNA in the centrosome and its possible involvement in the development of animals will be significant questions in continuing studies.

"Since RNA guides the translation of genes into proteins, knowing more about its role(s) in the centrosome may help researchers better understand the progression of diseases such as cancer, which has been linked to abnormal centrosome numbers in tumor cells," says Palazzo.

The study on surf clam centrosomes was initiated at the MBL, an international biological research center where scientists use locally abundant marine organisms like surf clams and their eggs as research models. Clam eggs are modeled as simple versions of human cells, and biologists who study cell division value them for several reasons, according to Palazzo. The eggs develop fast, entering the process of cell division less than 15 minutes after fertilization, and, once fertilized, divide in synch every 30-50 minutes -- providing billions of biochemically identical cells to study.

Using a purification technique Palazzo developed at the MBL, the scientists were able to isolate relatively large quantities of clam centrosomes for their research. Palazzo collaborated with Mark Alliegro and Mary Anne Alliegro during summers at the MBL.

In addition to his position as director of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer, Palazzo also holds appointments at the MBL as visiting summer researcher and at the Wadsworth Center of the New York State Department of Health as research scientist.

Tiffany Lohwater | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>