Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells’ generators star in action movie

13.12.2001


The star of the show: mitochondria.
© SPL


American Society for Cell Biology Meeting, Washington, December 2001

Microscope captures mitochondria bopping to a beat.


An intricate mesh of tubes wiggle, worm-like across the screen. "They’re speeding," says Tim Richardson proudly, watching mitochondria, the cell’s energy generators, zoom around the cell. His controversial microscopic method is shooting the cell’s innards as they’ve never been seen before.



Live cell imaging has revolutionised cell biology over the last 5 years. Using fluorescent labels, proteins can be tracked and filmed in real time. But the lasers used to make the dyes fluoresce exhaust them within seconds and damage or kill living cells.

Six years in the making, Richardson and his colleagues at the Hospital for Sick Children in Toronto, Canada have developed a new technique for peering inside the cell. Their movie, ’Dance of Mitochondria in the Living Cell’ is drawing audiences at this week’s the American Society for Cell Biology meeting in Washington DC.

"I’ve not seen anything like that before," says Andrew Waterfall, director of microscope imaging company Improvision based in Coventry, UK. A high resolution technique that keeps cells happy is "the holy grail of microscopy," he says.

Methods which harm the cell make the validity of observations questionable. "Lots of people’s biological research has gone as far as current light microscopy can see," says Waterfall.

Bopping to the beats of a customised classical soundtrack, mitochondria, the rigid rods of textbook biology are exposed. The speedy shape-shifters sprint across the cell in as little as 5 seconds. "We weren’t expecting to see mitochondria moving," says Richardson. The network of interconnecting filaments also randomly branch and fuse.

Defective mitochondria implicated in inherited diseases, such as childhood fatal condition Leigh’s syndrome, cannot suck up fluorescent dyes and were previously inscrutable. In these patients, Richardson’s technique shows, the mitochondrial filaments are thicker or spherical and static.

Whether these mobility problems contribute to the symptoms of the disease, or are a byproduct of underlying metabolic problems in mitochondrial proteins, is unclear. "We’re trying to interface between clinical and basic science," says team member Nu-An Pham.

Sceptics have questioned whether the movements are spontaneous, however. Mitochondrial ’dance’ might be a passive side-effect of movement in the cytoplasm, or even created by the heat of powerful lamps, points out mitochondria researcher Robert Balaban of the National Institutes of Health in Bethesda, Maryland.

Some evidence does suggest that mitochondria move to areas in the cell where most energy is needed. "That would be intriguing," says Balaban.

Existing light microscopes have trouble capturing transparent structures such as mitochondria, or making out finer details. Richardson’s ’Real-Time Microscopy’ uses light to produces images at a resolution of 200 nanometres, twice that of existing light microscopes and able to capture the 500 nanometre mitochondria with ease. Movies are captured on broadcast quality recorders. "It’s hugely expensive", admits Richardson.

The team, however, are cagey about the details of their technique until they are patented, describing them only as "beyond" existing techniques. The hush-hush attitude has raised hackles. "Not to show the results is inappropriate," says Balbaban.

In future, Richardson hopes to use the technique to shoot videos of many cell types and micro-organisms in action

HELEN PEARSON | © Nature News Service
Further information:
http://www.nature.com/nsu/011213/011213-12.html

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>