Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cells’ generators star in action movie


The star of the show: mitochondria.

American Society for Cell Biology Meeting, Washington, December 2001

Microscope captures mitochondria bopping to a beat.

An intricate mesh of tubes wiggle, worm-like across the screen. "They’re speeding," says Tim Richardson proudly, watching mitochondria, the cell’s energy generators, zoom around the cell. His controversial microscopic method is shooting the cell’s innards as they’ve never been seen before.

Live cell imaging has revolutionised cell biology over the last 5 years. Using fluorescent labels, proteins can be tracked and filmed in real time. But the lasers used to make the dyes fluoresce exhaust them within seconds and damage or kill living cells.

Six years in the making, Richardson and his colleagues at the Hospital for Sick Children in Toronto, Canada have developed a new technique for peering inside the cell. Their movie, ’Dance of Mitochondria in the Living Cell’ is drawing audiences at this week’s the American Society for Cell Biology meeting in Washington DC.

"I’ve not seen anything like that before," says Andrew Waterfall, director of microscope imaging company Improvision based in Coventry, UK. A high resolution technique that keeps cells happy is "the holy grail of microscopy," he says.

Methods which harm the cell make the validity of observations questionable. "Lots of people’s biological research has gone as far as current light microscopy can see," says Waterfall.

Bopping to the beats of a customised classical soundtrack, mitochondria, the rigid rods of textbook biology are exposed. The speedy shape-shifters sprint across the cell in as little as 5 seconds. "We weren’t expecting to see mitochondria moving," says Richardson. The network of interconnecting filaments also randomly branch and fuse.

Defective mitochondria implicated in inherited diseases, such as childhood fatal condition Leigh’s syndrome, cannot suck up fluorescent dyes and were previously inscrutable. In these patients, Richardson’s technique shows, the mitochondrial filaments are thicker or spherical and static.

Whether these mobility problems contribute to the symptoms of the disease, or are a byproduct of underlying metabolic problems in mitochondrial proteins, is unclear. "We’re trying to interface between clinical and basic science," says team member Nu-An Pham.

Sceptics have questioned whether the movements are spontaneous, however. Mitochondrial ’dance’ might be a passive side-effect of movement in the cytoplasm, or even created by the heat of powerful lamps, points out mitochondria researcher Robert Balaban of the National Institutes of Health in Bethesda, Maryland.

Some evidence does suggest that mitochondria move to areas in the cell where most energy is needed. "That would be intriguing," says Balaban.

Existing light microscopes have trouble capturing transparent structures such as mitochondria, or making out finer details. Richardson’s ’Real-Time Microscopy’ uses light to produces images at a resolution of 200 nanometres, twice that of existing light microscopes and able to capture the 500 nanometre mitochondria with ease. Movies are captured on broadcast quality recorders. "It’s hugely expensive", admits Richardson.

The team, however, are cagey about the details of their technique until they are patented, describing them only as "beyond" existing techniques. The hush-hush attitude has raised hackles. "Not to show the results is inappropriate," says Balbaban.

In future, Richardson hopes to use the technique to shoot videos of many cell types and micro-organisms in action

HELEN PEARSON | © Nature News Service
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>