Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells’ generators star in action movie

13.12.2001


The star of the show: mitochondria.
© SPL


American Society for Cell Biology Meeting, Washington, December 2001

Microscope captures mitochondria bopping to a beat.


An intricate mesh of tubes wiggle, worm-like across the screen. "They’re speeding," says Tim Richardson proudly, watching mitochondria, the cell’s energy generators, zoom around the cell. His controversial microscopic method is shooting the cell’s innards as they’ve never been seen before.



Live cell imaging has revolutionised cell biology over the last 5 years. Using fluorescent labels, proteins can be tracked and filmed in real time. But the lasers used to make the dyes fluoresce exhaust them within seconds and damage or kill living cells.

Six years in the making, Richardson and his colleagues at the Hospital for Sick Children in Toronto, Canada have developed a new technique for peering inside the cell. Their movie, ’Dance of Mitochondria in the Living Cell’ is drawing audiences at this week’s the American Society for Cell Biology meeting in Washington DC.

"I’ve not seen anything like that before," says Andrew Waterfall, director of microscope imaging company Improvision based in Coventry, UK. A high resolution technique that keeps cells happy is "the holy grail of microscopy," he says.

Methods which harm the cell make the validity of observations questionable. "Lots of people’s biological research has gone as far as current light microscopy can see," says Waterfall.

Bopping to the beats of a customised classical soundtrack, mitochondria, the rigid rods of textbook biology are exposed. The speedy shape-shifters sprint across the cell in as little as 5 seconds. "We weren’t expecting to see mitochondria moving," says Richardson. The network of interconnecting filaments also randomly branch and fuse.

Defective mitochondria implicated in inherited diseases, such as childhood fatal condition Leigh’s syndrome, cannot suck up fluorescent dyes and were previously inscrutable. In these patients, Richardson’s technique shows, the mitochondrial filaments are thicker or spherical and static.

Whether these mobility problems contribute to the symptoms of the disease, or are a byproduct of underlying metabolic problems in mitochondrial proteins, is unclear. "We’re trying to interface between clinical and basic science," says team member Nu-An Pham.

Sceptics have questioned whether the movements are spontaneous, however. Mitochondrial ’dance’ might be a passive side-effect of movement in the cytoplasm, or even created by the heat of powerful lamps, points out mitochondria researcher Robert Balaban of the National Institutes of Health in Bethesda, Maryland.

Some evidence does suggest that mitochondria move to areas in the cell where most energy is needed. "That would be intriguing," says Balaban.

Existing light microscopes have trouble capturing transparent structures such as mitochondria, or making out finer details. Richardson’s ’Real-Time Microscopy’ uses light to produces images at a resolution of 200 nanometres, twice that of existing light microscopes and able to capture the 500 nanometre mitochondria with ease. Movies are captured on broadcast quality recorders. "It’s hugely expensive", admits Richardson.

The team, however, are cagey about the details of their technique until they are patented, describing them only as "beyond" existing techniques. The hush-hush attitude has raised hackles. "Not to show the results is inappropriate," says Balbaban.

In future, Richardson hopes to use the technique to shoot videos of many cell types and micro-organisms in action

HELEN PEARSON | © Nature News Service
Further information:
http://www.nature.com/nsu/011213/011213-12.html

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>