Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells’ generators star in action movie

13.12.2001


The star of the show: mitochondria.
© SPL


American Society for Cell Biology Meeting, Washington, December 2001

Microscope captures mitochondria bopping to a beat.


An intricate mesh of tubes wiggle, worm-like across the screen. "They’re speeding," says Tim Richardson proudly, watching mitochondria, the cell’s energy generators, zoom around the cell. His controversial microscopic method is shooting the cell’s innards as they’ve never been seen before.



Live cell imaging has revolutionised cell biology over the last 5 years. Using fluorescent labels, proteins can be tracked and filmed in real time. But the lasers used to make the dyes fluoresce exhaust them within seconds and damage or kill living cells.

Six years in the making, Richardson and his colleagues at the Hospital for Sick Children in Toronto, Canada have developed a new technique for peering inside the cell. Their movie, ’Dance of Mitochondria in the Living Cell’ is drawing audiences at this week’s the American Society for Cell Biology meeting in Washington DC.

"I’ve not seen anything like that before," says Andrew Waterfall, director of microscope imaging company Improvision based in Coventry, UK. A high resolution technique that keeps cells happy is "the holy grail of microscopy," he says.

Methods which harm the cell make the validity of observations questionable. "Lots of people’s biological research has gone as far as current light microscopy can see," says Waterfall.

Bopping to the beats of a customised classical soundtrack, mitochondria, the rigid rods of textbook biology are exposed. The speedy shape-shifters sprint across the cell in as little as 5 seconds. "We weren’t expecting to see mitochondria moving," says Richardson. The network of interconnecting filaments also randomly branch and fuse.

Defective mitochondria implicated in inherited diseases, such as childhood fatal condition Leigh’s syndrome, cannot suck up fluorescent dyes and were previously inscrutable. In these patients, Richardson’s technique shows, the mitochondrial filaments are thicker or spherical and static.

Whether these mobility problems contribute to the symptoms of the disease, or are a byproduct of underlying metabolic problems in mitochondrial proteins, is unclear. "We’re trying to interface between clinical and basic science," says team member Nu-An Pham.

Sceptics have questioned whether the movements are spontaneous, however. Mitochondrial ’dance’ might be a passive side-effect of movement in the cytoplasm, or even created by the heat of powerful lamps, points out mitochondria researcher Robert Balaban of the National Institutes of Health in Bethesda, Maryland.

Some evidence does suggest that mitochondria move to areas in the cell where most energy is needed. "That would be intriguing," says Balaban.

Existing light microscopes have trouble capturing transparent structures such as mitochondria, or making out finer details. Richardson’s ’Real-Time Microscopy’ uses light to produces images at a resolution of 200 nanometres, twice that of existing light microscopes and able to capture the 500 nanometre mitochondria with ease. Movies are captured on broadcast quality recorders. "It’s hugely expensive", admits Richardson.

The team, however, are cagey about the details of their technique until they are patented, describing them only as "beyond" existing techniques. The hush-hush attitude has raised hackles. "Not to show the results is inappropriate," says Balbaban.

In future, Richardson hopes to use the technique to shoot videos of many cell types and micro-organisms in action

HELEN PEARSON | © Nature News Service
Further information:
http://www.nature.com/nsu/011213/011213-12.html

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>