Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle is plastic fantastic

12.12.2001


Some muscle cells are multi-talented.
© SPL


American Society for Cell Biology Meeting, Washington, December 2001

Stem cells’ fates are a multiple choice.


A single stem cell from adult mouse muscle can form enough blood cells to save another animal’s life - and still switch back to making brawn, researchers announced at the Washington meeting of the American Society for Cell Biology this week.



Stem cells found in mashed up muscle can migrate into the bone marrow and make blood cells1. Muscle contains many different types of cell, however, and the exact identity of the one responsible remains unclear.

Johnny Huard, of the University of Pittsburgh in Pennsylvania, and his colleagues selected a group of adult mouse muscle cells that kept dividing for days and were marked by a distinct array of proteins.

When injected into mice whose bone marrow had been killed by radiation, the stem cells replaced it. Mice that would otherwise have died after 2 weeks survived for 6 months. And, when new blood stem cells were recovered and injected into a third mouse, they reverted to producing more muscle. This backtracking to their original job is the "most amazing thing", says Huard.

"It shows that cells can go in many different directions given the right environment," says stem-cell researcher Helen Blau of Stanford University in California. The traditional view - that stem cells progressively and permanently lose their initial ability to produce many cell types - is changing, she argues.

Rather than a one-way road of cell destiny, "It looks like a San Francisco highway", says Blau. Stem cells can go off at one exit to make nerve cells and rejoin to make liver cells when the need arises.

Embryonic stem (ES) cells may still have properties that adult stem cells lack, cautions Ron McKay of the Memorial Sloan-Kettering Cancer Center in New York. Adult nerve stem cells are more likely to stop producing new nerve cells than are ES cells, he says, arguing for continued experimentation with the controversial human cells.

"I’ll say it because we’re in Washington: they [ES cells] grow without changing their developmental potential," he says.

Muscling in

"We weren’t looking for stem cells," explains Huard. He and his team were trying to find muscle cells that could restore the missing protein dystrophin in patients suffering from the wasting muscle disease Duchenne muscular dystrophy (DMD). They wanted cells that were tough enough to survive transplantation into a patient.

They injected their selected cell group, labelled so that they could be tracked, into mice with a form of DMD. But the cells rarely turned up in muscle. Instead, Huard found them in heart, liver, lung, spleen - but mainly bone marrow. "I got sidetracked," he says.

Huard is now trying to coax his stem cells back to muscle by searching for the molecules that lure them there. Working muscle cells would bump up dystrophin levels. "It will be very exciting," he predicts.

To finally identify the elusive muscle stem cell, researchers must start from a single cell, warns Blau: even Huard’s group of purified cells could contain outliers with unknown effects. Such a technique identified an ’ultimate’ stem cell from bone marrow earlier this year2.

References

  1. Jackson, K.A. et al. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proceedings of the National Academy of Science, 96, 14482 - 14486, (1999).
  2. Krause, D.S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105, 369 - 377, (2001).


| © Nature News Service
Further information:
http://www.nature.com/nsu/011213/011213-9.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>