Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Muscle is plastic fantastic


Some muscle cells are multi-talented.

American Society for Cell Biology Meeting, Washington, December 2001

Stem cells’ fates are a multiple choice.

A single stem cell from adult mouse muscle can form enough blood cells to save another animal’s life - and still switch back to making brawn, researchers announced at the Washington meeting of the American Society for Cell Biology this week.

Stem cells found in mashed up muscle can migrate into the bone marrow and make blood cells1. Muscle contains many different types of cell, however, and the exact identity of the one responsible remains unclear.

Johnny Huard, of the University of Pittsburgh in Pennsylvania, and his colleagues selected a group of adult mouse muscle cells that kept dividing for days and were marked by a distinct array of proteins.

When injected into mice whose bone marrow had been killed by radiation, the stem cells replaced it. Mice that would otherwise have died after 2 weeks survived for 6 months. And, when new blood stem cells were recovered and injected into a third mouse, they reverted to producing more muscle. This backtracking to their original job is the "most amazing thing", says Huard.

"It shows that cells can go in many different directions given the right environment," says stem-cell researcher Helen Blau of Stanford University in California. The traditional view - that stem cells progressively and permanently lose their initial ability to produce many cell types - is changing, she argues.

Rather than a one-way road of cell destiny, "It looks like a San Francisco highway", says Blau. Stem cells can go off at one exit to make nerve cells and rejoin to make liver cells when the need arises.

Embryonic stem (ES) cells may still have properties that adult stem cells lack, cautions Ron McKay of the Memorial Sloan-Kettering Cancer Center in New York. Adult nerve stem cells are more likely to stop producing new nerve cells than are ES cells, he says, arguing for continued experimentation with the controversial human cells.

"I’ll say it because we’re in Washington: they [ES cells] grow without changing their developmental potential," he says.

Muscling in

"We weren’t looking for stem cells," explains Huard. He and his team were trying to find muscle cells that could restore the missing protein dystrophin in patients suffering from the wasting muscle disease Duchenne muscular dystrophy (DMD). They wanted cells that were tough enough to survive transplantation into a patient.

They injected their selected cell group, labelled so that they could be tracked, into mice with a form of DMD. But the cells rarely turned up in muscle. Instead, Huard found them in heart, liver, lung, spleen - but mainly bone marrow. "I got sidetracked," he says.

Huard is now trying to coax his stem cells back to muscle by searching for the molecules that lure them there. Working muscle cells would bump up dystrophin levels. "It will be very exciting," he predicts.

To finally identify the elusive muscle stem cell, researchers must start from a single cell, warns Blau: even Huard’s group of purified cells could contain outliers with unknown effects. Such a technique identified an ’ultimate’ stem cell from bone marrow earlier this year2.


  1. Jackson, K.A. et al. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proceedings of the National Academy of Science, 96, 14482 - 14486, (1999).
  2. Krause, D.S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105, 369 - 377, (2001).

| © Nature News Service
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>