Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle is plastic fantastic

12.12.2001


Some muscle cells are multi-talented.
© SPL


American Society for Cell Biology Meeting, Washington, December 2001

Stem cells’ fates are a multiple choice.


A single stem cell from adult mouse muscle can form enough blood cells to save another animal’s life - and still switch back to making brawn, researchers announced at the Washington meeting of the American Society for Cell Biology this week.



Stem cells found in mashed up muscle can migrate into the bone marrow and make blood cells1. Muscle contains many different types of cell, however, and the exact identity of the one responsible remains unclear.

Johnny Huard, of the University of Pittsburgh in Pennsylvania, and his colleagues selected a group of adult mouse muscle cells that kept dividing for days and were marked by a distinct array of proteins.

When injected into mice whose bone marrow had been killed by radiation, the stem cells replaced it. Mice that would otherwise have died after 2 weeks survived for 6 months. And, when new blood stem cells were recovered and injected into a third mouse, they reverted to producing more muscle. This backtracking to their original job is the "most amazing thing", says Huard.

"It shows that cells can go in many different directions given the right environment," says stem-cell researcher Helen Blau of Stanford University in California. The traditional view - that stem cells progressively and permanently lose their initial ability to produce many cell types - is changing, she argues.

Rather than a one-way road of cell destiny, "It looks like a San Francisco highway", says Blau. Stem cells can go off at one exit to make nerve cells and rejoin to make liver cells when the need arises.

Embryonic stem (ES) cells may still have properties that adult stem cells lack, cautions Ron McKay of the Memorial Sloan-Kettering Cancer Center in New York. Adult nerve stem cells are more likely to stop producing new nerve cells than are ES cells, he says, arguing for continued experimentation with the controversial human cells.

"I’ll say it because we’re in Washington: they [ES cells] grow without changing their developmental potential," he says.

Muscling in

"We weren’t looking for stem cells," explains Huard. He and his team were trying to find muscle cells that could restore the missing protein dystrophin in patients suffering from the wasting muscle disease Duchenne muscular dystrophy (DMD). They wanted cells that were tough enough to survive transplantation into a patient.

They injected their selected cell group, labelled so that they could be tracked, into mice with a form of DMD. But the cells rarely turned up in muscle. Instead, Huard found them in heart, liver, lung, spleen - but mainly bone marrow. "I got sidetracked," he says.

Huard is now trying to coax his stem cells back to muscle by searching for the molecules that lure them there. Working muscle cells would bump up dystrophin levels. "It will be very exciting," he predicts.

To finally identify the elusive muscle stem cell, researchers must start from a single cell, warns Blau: even Huard’s group of purified cells could contain outliers with unknown effects. Such a technique identified an ’ultimate’ stem cell from bone marrow earlier this year2.

References

  1. Jackson, K.A. et al. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proceedings of the National Academy of Science, 96, 14482 - 14486, (1999).
  2. Krause, D.S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105, 369 - 377, (2001).


| © Nature News Service
Further information:
http://www.nature.com/nsu/011213/011213-9.html

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>