Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Receptor Plays Key Role In Stem Cells’ Pluripotency

05.12.2001


Scientists at the University of Pennsylvania have identified a receptor that plays a key role in restricting embryonic stem cells’ pluripotency, their ability to develop into virtually any of an adult animal’s cell types.
The work is the first demonstration of a mechanism by which pluripotency is lost in mammalian embryos, one that operates with nearly the precision of an on/off switch in mouse embryos.

With further study, the receptor, dubbed GCNF, could open the door to new ways of creating embryonic stem cells without the ethical concerns associated with sacrificing embryos. GCNF, short for germ cell nuclear factor, was detailed in a recent paper in the journal Developmental Cell.


"In a sense, we’re hoping that understanding what GCNF actually does as it shuts down genes will let us turn back the clock on cellular development," said senior author Hans R. Schöler, professor of animal biology at Penn’s School of Veterinary Medicine. "This knowledge may permit us to convert ordinary adult cells back to embryonic stem cells for research purposes."

Schöler, also the director of Penn’s Center for Animal Transgenesis and Germ Cell Research, said GCNF is the first factor known to repress the key gene Oct4, which is expressed in pluripotent embryonic cells.

While GCNF is likely just one cog in a complex cellular machinery that dictates pluripotency among the cells of mouse embryos, Schöler’s team believes it is a crucial player: without GCNF, restriction of pluripotency does not occur properly and the embryo eventually dies.

"The identification of GCNF as a repressor of Oct4 expression opens up several new avenues for understanding Oct4 regulation and, therefore, the control of the pluripotent state," wrote Peter J. Donovan of Thomas Jefferson University in an analysis appearing in the November issue of Nature Genetics. "The identification of a nexus between Oct4 and GCNF provides some critical clues as to how the differences between pluripotent and differentiated cells are established and maintained."

Active in a very limited population of cells, Oct4 is the only gene known to play an essential role in maintaining pluripotency. Whenever its expression is suppressed, as by GCNF, pluripotency is lost. Oct4’s tightly regulated activity decreases steadily as embryonic stem cells differentiate; GCNF eventually restricts Oct4’s expression in the body’s somatic cells, leaving expression only in the germ cell lineage.

With President Bush’s August declaration that federally funded research would be limited to stem cell lines already harvested from frozen embryos, many researchers are looking to alternative sources. Embryonic stem cells’ scientific appeal lies in their pluripotency: they have not yet determined their ultimate role, so each has the potential to become one of more than 200 tissue types in the body.

Scientists can now isolate stem cells, induce them to multiply and preferentially direct them to become, for example, skin cells, nerve cells or heart cells. This opens the door to replacing damaged adult cells that are not able to regenerate and may ultimately allow scientists to grow replacement organs for those in need of a new heart, lung or liver.

Schöler was joined in the September Developmental Cell paper by Guy Fuhrmann and Ian Sylvester of Penn; Arthur C.K. Chung, Kathy J. Jackson, Geoffrey Hummelke and Austen J. Cooney of Baylor College of Medicine; Aria Baniahmad of the University of Giessen in Germany; and Julien Sutter of the Centre du Neurochimie in Strasbourg, France.

Their work was funded by the National Institutes of Health, the Marion Dilley and David George Jones Funds and the Commonwealth and General Assembly of Pennsylvania.

Steve Bradt | International Science News
Further information:
http://unisci.com/stories/20014/1204015.htm

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>