Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Receptor Plays Key Role In Stem Cells’ Pluripotency

05.12.2001


Scientists at the University of Pennsylvania have identified a receptor that plays a key role in restricting embryonic stem cells’ pluripotency, their ability to develop into virtually any of an adult animal’s cell types.
The work is the first demonstration of a mechanism by which pluripotency is lost in mammalian embryos, one that operates with nearly the precision of an on/off switch in mouse embryos.

With further study, the receptor, dubbed GCNF, could open the door to new ways of creating embryonic stem cells without the ethical concerns associated with sacrificing embryos. GCNF, short for germ cell nuclear factor, was detailed in a recent paper in the journal Developmental Cell.


"In a sense, we’re hoping that understanding what GCNF actually does as it shuts down genes will let us turn back the clock on cellular development," said senior author Hans R. Schöler, professor of animal biology at Penn’s School of Veterinary Medicine. "This knowledge may permit us to convert ordinary adult cells back to embryonic stem cells for research purposes."

Schöler, also the director of Penn’s Center for Animal Transgenesis and Germ Cell Research, said GCNF is the first factor known to repress the key gene Oct4, which is expressed in pluripotent embryonic cells.

While GCNF is likely just one cog in a complex cellular machinery that dictates pluripotency among the cells of mouse embryos, Schöler’s team believes it is a crucial player: without GCNF, restriction of pluripotency does not occur properly and the embryo eventually dies.

"The identification of GCNF as a repressor of Oct4 expression opens up several new avenues for understanding Oct4 regulation and, therefore, the control of the pluripotent state," wrote Peter J. Donovan of Thomas Jefferson University in an analysis appearing in the November issue of Nature Genetics. "The identification of a nexus between Oct4 and GCNF provides some critical clues as to how the differences between pluripotent and differentiated cells are established and maintained."

Active in a very limited population of cells, Oct4 is the only gene known to play an essential role in maintaining pluripotency. Whenever its expression is suppressed, as by GCNF, pluripotency is lost. Oct4’s tightly regulated activity decreases steadily as embryonic stem cells differentiate; GCNF eventually restricts Oct4’s expression in the body’s somatic cells, leaving expression only in the germ cell lineage.

With President Bush’s August declaration that federally funded research would be limited to stem cell lines already harvested from frozen embryos, many researchers are looking to alternative sources. Embryonic stem cells’ scientific appeal lies in their pluripotency: they have not yet determined their ultimate role, so each has the potential to become one of more than 200 tissue types in the body.

Scientists can now isolate stem cells, induce them to multiply and preferentially direct them to become, for example, skin cells, nerve cells or heart cells. This opens the door to replacing damaged adult cells that are not able to regenerate and may ultimately allow scientists to grow replacement organs for those in need of a new heart, lung or liver.

Schöler was joined in the September Developmental Cell paper by Guy Fuhrmann and Ian Sylvester of Penn; Arthur C.K. Chung, Kathy J. Jackson, Geoffrey Hummelke and Austen J. Cooney of Baylor College of Medicine; Aria Baniahmad of the University of Giessen in Germany; and Julien Sutter of the Centre du Neurochimie in Strasbourg, France.

Their work was funded by the National Institutes of Health, the Marion Dilley and David George Jones Funds and the Commonwealth and General Assembly of Pennsylvania.

Steve Bradt | International Science News
Further information:
http://unisci.com/stories/20014/1204015.htm

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>