Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for targeting cancer cells

07.06.2006
‘LEGO-Like’ Building Blocks to Halt Cell Growth Wins Kaye Prize for Hebrew University Ph.D. Student

A method for delivery of drugs to targeted cells through the design of specific molecular structures called SIB (Small Integrated Building Blocks) has won a prestigious scientific prize for a Ph.D. student in organic chemistry at the Hebrew University of Jerusalem.

Jerusalemite Nir Qvit, 34, will be one of those receiving the Kaye Innovation Award on June 13, during the 69th meeting of the Hebrew university Board of Governors.

Qvit has shown through his research that it is possible to greatly increase drug delivery efficiency by designing specific molecular structures made up of known pharmaceutically effective peptides (small protein molecules) that are attached to tailor-made, geometric-like structures called “scaffolding.”

Each scaffold is specifically designed to combine the peptides in such a way that they will form an effective medicinal combination and so that they will bind to the receptors of specific targeted cells. Qvit refers to his process as somewhat analogous to building different kinds of structures through the use of LEGO.

Qvit, a student of Prof. Chaim Gilon of the Department of Organic Chemistry, has shown, for example, that with a particular combination of peptides and scaffold design, it is possible to create a synthetic molecule that will bind to the IGF-1 (insulin-like growth factor-1) receptor. IGF-1 is a protein that plays a critical role in the proliferation of many cancers, including prostate, lung, breast, colon and brain cancers. The binding action of the molecule to the receptor inhibits the activation of the IGF-1 protein in the cells, thus halting the cancerous growth.

Through this process of “combinational chemistry,” involving peptides and scaffold design, Qvit says that many different types of molecules can be built that will reach specifically targeted cells, offering hope for treatment of not only cancer, but other diseases as well, without harming healthy cells.

The Kaye Innovation Awards have been given annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff, and students of the Hebrew University to develop innovative methods and inventions with good commercial potential which will benefit the university and society.

Jerry Barach | The Hebrew University of Jerusal
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>