Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for targeting cancer cells

07.06.2006
‘LEGO-Like’ Building Blocks to Halt Cell Growth Wins Kaye Prize for Hebrew University Ph.D. Student

A method for delivery of drugs to targeted cells through the design of specific molecular structures called SIB (Small Integrated Building Blocks) has won a prestigious scientific prize for a Ph.D. student in organic chemistry at the Hebrew University of Jerusalem.

Jerusalemite Nir Qvit, 34, will be one of those receiving the Kaye Innovation Award on June 13, during the 69th meeting of the Hebrew university Board of Governors.

Qvit has shown through his research that it is possible to greatly increase drug delivery efficiency by designing specific molecular structures made up of known pharmaceutically effective peptides (small protein molecules) that are attached to tailor-made, geometric-like structures called “scaffolding.”

Each scaffold is specifically designed to combine the peptides in such a way that they will form an effective medicinal combination and so that they will bind to the receptors of specific targeted cells. Qvit refers to his process as somewhat analogous to building different kinds of structures through the use of LEGO.

Qvit, a student of Prof. Chaim Gilon of the Department of Organic Chemistry, has shown, for example, that with a particular combination of peptides and scaffold design, it is possible to create a synthetic molecule that will bind to the IGF-1 (insulin-like growth factor-1) receptor. IGF-1 is a protein that plays a critical role in the proliferation of many cancers, including prostate, lung, breast, colon and brain cancers. The binding action of the molecule to the receptor inhibits the activation of the IGF-1 protein in the cells, thus halting the cancerous growth.

Through this process of “combinational chemistry,” involving peptides and scaffold design, Qvit says that many different types of molecules can be built that will reach specifically targeted cells, offering hope for treatment of not only cancer, but other diseases as well, without harming healthy cells.

The Kaye Innovation Awards have been given annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff, and students of the Hebrew University to develop innovative methods and inventions with good commercial potential which will benefit the university and society.

Jerry Barach | The Hebrew University of Jerusal
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>