Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for targeting cancer cells

07.06.2006
‘LEGO-Like’ Building Blocks to Halt Cell Growth Wins Kaye Prize for Hebrew University Ph.D. Student

A method for delivery of drugs to targeted cells through the design of specific molecular structures called SIB (Small Integrated Building Blocks) has won a prestigious scientific prize for a Ph.D. student in organic chemistry at the Hebrew University of Jerusalem.

Jerusalemite Nir Qvit, 34, will be one of those receiving the Kaye Innovation Award on June 13, during the 69th meeting of the Hebrew university Board of Governors.

Qvit has shown through his research that it is possible to greatly increase drug delivery efficiency by designing specific molecular structures made up of known pharmaceutically effective peptides (small protein molecules) that are attached to tailor-made, geometric-like structures called “scaffolding.”

Each scaffold is specifically designed to combine the peptides in such a way that they will form an effective medicinal combination and so that they will bind to the receptors of specific targeted cells. Qvit refers to his process as somewhat analogous to building different kinds of structures through the use of LEGO.

Qvit, a student of Prof. Chaim Gilon of the Department of Organic Chemistry, has shown, for example, that with a particular combination of peptides and scaffold design, it is possible to create a synthetic molecule that will bind to the IGF-1 (insulin-like growth factor-1) receptor. IGF-1 is a protein that plays a critical role in the proliferation of many cancers, including prostate, lung, breast, colon and brain cancers. The binding action of the molecule to the receptor inhibits the activation of the IGF-1 protein in the cells, thus halting the cancerous growth.

Through this process of “combinational chemistry,” involving peptides and scaffold design, Qvit says that many different types of molecules can be built that will reach specifically targeted cells, offering hope for treatment of not only cancer, but other diseases as well, without harming healthy cells.

The Kaye Innovation Awards have been given annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff, and students of the Hebrew University to develop innovative methods and inventions with good commercial potential which will benefit the university and society.

Jerry Barach | The Hebrew University of Jerusal
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>