Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fundamentally new approach to improving cancer chemotherapy

07.06.2006
A new strategy for getting anti-cancer drugs to kill cancer cells, without causing serious harm to normal cells in the body, is reported in the current [June] issue of ACS Chemical Biology, a monthly peer-reviewed journal of the American Chemical Society.

The approach, tested in laboratory experiments with several existing anti-cancer drugs, could offer substantial benefits for cancer patients, according to Jeffrey P. Krise, Ph.D. Krise led a group of pharmaceutical and medicinal chemists at the University of Kansas at Lawrence who did the research.

The new approach would allow anticancer drugs to accumulate in both normal and malignant cells. The drugs, however, would be tweaked by giving them "basic" chemical properties. In chemistry, "basic" means an alkaline substance like baking soda or laundry detergent, which has properties opposite those of acidic substances.

Normal cells simply isolate anti-cancer drugs with basic properties, greatly reducing the toxic effects. Cancer cells, in contrast, have an impaired ability to isolate basic substances, and get hit with a full blast of toxicity.

"It could allow cancer patients to tolerate higher and more effective doses of chemotherapy before normal cells are damaged to an extent that causes serious side effects and cessation of therapy," Krise said. "The approach is completely different from previous attempts that were designed to deliver drugs only to cancer cells and not normal cells."

"The results of our studies should lead to the development of rationally designed molecules that are more selective and produce fewer side effects," Krise explained. "Importantly, this technology can also be used to modify existing drugs and increase their selectivity."

Krise’s report describes a number of existing anti-cancer drugs that have basic properties, and notes that the new findings may provide the first explanation of why these drugs are so effective.

"There is obviously much more work to be done in order for the impact of the work to be fully appreciated and accepted," Krise said. "We are hopeful, at the current time, that this technology will have broad applicability."

The research team included Muralikrishna Duvvuri, Ph.D., Samidha Konkar, Ph.D., Kwon Ho Hong, Ph.D., and Brian S. J. Blagg, Ph.D.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>