Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fundamentally new approach to improving cancer chemotherapy

07.06.2006
A new strategy for getting anti-cancer drugs to kill cancer cells, without causing serious harm to normal cells in the body, is reported in the current [June] issue of ACS Chemical Biology, a monthly peer-reviewed journal of the American Chemical Society.

The approach, tested in laboratory experiments with several existing anti-cancer drugs, could offer substantial benefits for cancer patients, according to Jeffrey P. Krise, Ph.D. Krise led a group of pharmaceutical and medicinal chemists at the University of Kansas at Lawrence who did the research.

The new approach would allow anticancer drugs to accumulate in both normal and malignant cells. The drugs, however, would be tweaked by giving them "basic" chemical properties. In chemistry, "basic" means an alkaline substance like baking soda or laundry detergent, which has properties opposite those of acidic substances.

Normal cells simply isolate anti-cancer drugs with basic properties, greatly reducing the toxic effects. Cancer cells, in contrast, have an impaired ability to isolate basic substances, and get hit with a full blast of toxicity.

"It could allow cancer patients to tolerate higher and more effective doses of chemotherapy before normal cells are damaged to an extent that causes serious side effects and cessation of therapy," Krise said. "The approach is completely different from previous attempts that were designed to deliver drugs only to cancer cells and not normal cells."

"The results of our studies should lead to the development of rationally designed molecules that are more selective and produce fewer side effects," Krise explained. "Importantly, this technology can also be used to modify existing drugs and increase their selectivity."

Krise’s report describes a number of existing anti-cancer drugs that have basic properties, and notes that the new findings may provide the first explanation of why these drugs are so effective.

"There is obviously much more work to be done in order for the impact of the work to be fully appreciated and accepted," Krise said. "We are hopeful, at the current time, that this technology will have broad applicability."

The research team included Muralikrishna Duvvuri, Ph.D., Samidha Konkar, Ph.D., Kwon Ho Hong, Ph.D., and Brian S. J. Blagg, Ph.D.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht No gene is an island
25.07.2017 | Institute of Science and Technology Austria

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

No gene is an island

25.07.2017 | Life Sciences

Flexible proximity sensor creates smart surfaces

25.07.2017 | Materials Sciences

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>