Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth heart researchers discover new defect in artery growth

06.06.2006
From the beginning, arteries and veins are different in the way they branch into vascular networks, say Dartmouth heart researchers. They have identified a new defect limited to arterial development.

The discovery, reported in the June issue of Developmental Cell, upends some theories about the origins of blood vessels and could change the nature of vascular biology research that seeks to harness the mechanisms of blood vessel growth for treatment.

"This is the first demonstration of a vascular branching defect that is limited to arteries," says Dr. Michael Simons, professor of medicine and of pharmacology and toxicology at Dartmouth Medical School and chief of cardiology at Dartmouth-Hitchcock Medical Center, who led the international team. "It appears that venous and arterial endothelial cells are fundamentally different from day one. Just because they are endothelial cells doesn’t mean they are the same."

Blood vessel growth, called angiogenesis, is a double-edged sword. It aids in circulation and wound healing, but also feeds cancer tumors. Most attempts at therapeutic angiogenesis to stimulate growth of arteries have failed, Simons notes. One of the reasons may be the tendency to use venous cells to study potential therapeutic agents. "Our findings indicate that you have to choose the endothelial cell type to study to fit question you ask. So, to think about how to understand the forces of artery formation, we need to study arterial endothelial cells."

The researchers determined that an intracellular protein synectin is a key regulator of arterial growth. Using mice and zebra fish, they showed that disruption of synectin impairs arterial development. Knocking down levels in zebra fish or eliminating them in mice, they found, "resulted in profound reduction in size and complexity of the arterial network, while remarkably, not affecting venous development," the team reports. The synectin gene is expressed in every cell type in body, yet the defect is only arterial.

Homing in on the molecular process, the team found that the synectin deficient arterial endothelial cells did not make the thin membrane extensions characteristic of moving cells. Normally, a protein called Rac1 is activated to initiate the formation of the filaments, called lamellipodia. Synectin deficient arterial endothelial cells appear to have a defect that prevents the movement of the activated Rac1 protein to the cell edge to form lamellipodia.

When arteries are clogged in coronary artery disease, patients form extra arteries called collaterals to help blood bypass the obstruction. However, some patients cannot form many collateral arteries, and those patients have more serious heart disease, Simons explains. Early studies suggest that abnormal synectin gene expression may explain the absence of extra arteries in some of the patients.

Mednews | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>