Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth heart researchers discover new defect in artery growth

06.06.2006
From the beginning, arteries and veins are different in the way they branch into vascular networks, say Dartmouth heart researchers. They have identified a new defect limited to arterial development.

The discovery, reported in the June issue of Developmental Cell, upends some theories about the origins of blood vessels and could change the nature of vascular biology research that seeks to harness the mechanisms of blood vessel growth for treatment.

"This is the first demonstration of a vascular branching defect that is limited to arteries," says Dr. Michael Simons, professor of medicine and of pharmacology and toxicology at Dartmouth Medical School and chief of cardiology at Dartmouth-Hitchcock Medical Center, who led the international team. "It appears that venous and arterial endothelial cells are fundamentally different from day one. Just because they are endothelial cells doesn’t mean they are the same."

Blood vessel growth, called angiogenesis, is a double-edged sword. It aids in circulation and wound healing, but also feeds cancer tumors. Most attempts at therapeutic angiogenesis to stimulate growth of arteries have failed, Simons notes. One of the reasons may be the tendency to use venous cells to study potential therapeutic agents. "Our findings indicate that you have to choose the endothelial cell type to study to fit question you ask. So, to think about how to understand the forces of artery formation, we need to study arterial endothelial cells."

The researchers determined that an intracellular protein synectin is a key regulator of arterial growth. Using mice and zebra fish, they showed that disruption of synectin impairs arterial development. Knocking down levels in zebra fish or eliminating them in mice, they found, "resulted in profound reduction in size and complexity of the arterial network, while remarkably, not affecting venous development," the team reports. The synectin gene is expressed in every cell type in body, yet the defect is only arterial.

Homing in on the molecular process, the team found that the synectin deficient arterial endothelial cells did not make the thin membrane extensions characteristic of moving cells. Normally, a protein called Rac1 is activated to initiate the formation of the filaments, called lamellipodia. Synectin deficient arterial endothelial cells appear to have a defect that prevents the movement of the activated Rac1 protein to the cell edge to form lamellipodia.

When arteries are clogged in coronary artery disease, patients form extra arteries called collaterals to help blood bypass the obstruction. However, some patients cannot form many collateral arteries, and those patients have more serious heart disease, Simons explains. Early studies suggest that abnormal synectin gene expression may explain the absence of extra arteries in some of the patients.

Mednews | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>