Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


100,000 year-old DNA sequence allows new look at Neandertal’s genetic diversity

By recovering and sequencing intact DNA from an especially ancient Neandertal specimen, researchers have found evidence suggesting that the genetic diversity among Neandertals was higher than previously thought.

The findings also suggest that genetic diversity may have been higher in earlier Neandertal periods relative to later periods that approached the arrival of humans in Europe. Changes in genetic diversity over time are thought to reflect population events, such as low-population bottlenecks caused by disease or environmental change, as well as the influence of random genetic change. The findings are reported in the June 6th issue of Current Biology by a group of researchers including Ludovic Orlando and led by Catherine Hänni of Ecole Normale Supérieur in Lyon, France.

Neandertals were the only representatives of the genus Homo in Europe during most of the last 300,000 years, becoming extinct shortly after the arrival of modern humans on the continent around 30,000 years ago. Traces of mitochondrial DNA (mtDNA) sequences still present in fossilized bones have been used in past studies in an effort to identify and track the potential genetic legacy of Neandertals among modern Europeans. Though such genetic continuity would have been the hallmark of interbreeding between modern humans and Neandertals at the time of their European coexistence, the mtDNA sequences from the nine neandertal specimens that have been analyzed to date – and that lived around the time of the cohabitation period – do not match those found among modern humans, suggesting that little, if any, interbreeding took place.

In their new work, Dr. Hänni and colleagues now report the oldest Neandertal mtDNA sequence ever recovered. The Neandertal specimen analyzed consists in a molar of a 10-12 year-old child that lived in the Meuse valley (Scladina cave, Belgium) around 100,000 years ago. The specimen yielded 123bp of mtDNA – a very short section of DNA by modern sequencing standards, but a technical feat considering the very ancient source of tissue. The reason for choosing such an old specimen was simple: it unambiguously predates the period when Neandertals cohabited with modern humans. By comparing this sequence with already published – and considerably younger – Neandertal sequences, the researchers sought to reveal whether the Neandertal mtDNA pool exhibited long-term stability or drastic modification around the time of cohabitation with modern humans. There was a second reason to pay attention on the Scladina molar: it has only been discovered very recently. This means that all individuals who have been in contact with it are known, and their DNA could be sequenced to detect any possible contamination of the Neandertal sample by modern human DNA.

The Neandertal sequence from Scladina confirms that Neandertals and modern humans were only distant relatives – Neandertal sequences are all closer to each other than to any known human sequence. But the study also reveals that the genetic diversity of Neandertals has been underestimated. Indeed, the mtDNA from the Scladina sample is more divergent relative to modern humans than is mtDNA from recent Neandertals, suggesting that Neandertals were a more genetically diverse group than previously thought.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>