Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy accelerates healing of damaged skeletal muscle

06.06.2006
University of Pittsburgh School of Medicine researchers have successfully used gene therapy to accelerate muscle regeneration in experimental animals with muscle damage, suggesting this technique may be a novel and effective approach for improving skeletal muscle healing, particularly for serious sports-related injuries.

These findings are being presented at the American Society of Gene Therapy annual meeting in Baltimore, May 31 to June 4.

Skeletal muscle injuries are the most common injuries encountered in sports medicine. Although such injuries can heal spontaneously, scar tissue formation, or fibrosis, can significantly impede this process, resulting in incomplete functional recovery. Of particular concern are top athletes, who, when injured, need to recover fully as quickly as possible.

In this study, the Pitt researchers injected mice with a gene therapy vector containing myostatin propeptide--a protein that blocks the activity of the muscle-growth inhibitor myostatin--three weeks prior to experimentally damaging the mice’s skeletal muscles. Four weeks after skeletal muscle injury, the investigators observed an enhancement of muscle regeneration in the gene-therapy treated mice compared to the non-gene-therapy treated control mice. There also was significantly less fibrous scar tissue in the skeletal muscle of the gene-therapy treated mice compared to the control mice.

According to corresponding author Johnny Huard, Ph.D., the Henry J. Mankin Endowed Chair and Professor in Orthopaedic Surgery, University of Pittsburgh School of Medicine, and Director of the Stem Cell Research Center of Children’s Hospital of Pittsburgh, this approach offers a significant, long-lasting method for treating serious, sports-related muscle injuries.

"Based on our previous studies, we expect that gene-therapy treated cells will continue to overproduce myostatin propeptide for at least two years. Since the remodeling phase of skeletal muscle healing is a long-term process, we believe that prolonged expression of myostatin propeptide will continue to contribute to recovery of injured skeletal muscle by inducing an increase in muscle mass and minimizing fibrosis. This could significantly reduce the amount of time an athlete needs to recover and result in a more complete recovery," he explained.

Jim Swyers | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>