Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new kind of mutation could explain numerous phenotypic variations in various species, among which humans

Thanks to a recent study on the genetic factors that promote muscular hypertrophy among Texel sheep, Prof. Michel Georges’ team at the University of Liège has discovered a new kind of mutation that could be at the origin of many phenotypes in various species, among which humans, including genetic predispositions to certain hereditary diseases.

This discovery is of significant interest to the international scientific community. The results are published in this week’s edition of the American journal Nature Genetics.

The authors describe the discovery of a novel class of mutations that disrupt the function of a gene and thereby cause a specific phenotype. The mutation created the appearance of an “illegitimate” microRNA (miRNA) recognition site in a gene that did not have it in its normal form. In this study, the gene concerned is the myostatin. This gene is expressed in the skeletal muscle and the function of the derived protein is to inhibit muscular growth. The mutation discovered among sheep exposed a recognition site for two miRNAs that are highly expressed in the muscle. In “mutant” animals, these miRNAs will consequently target the myostatin gene and block its translation. The result is that the absence of myostatin provokes a muscular hypertrophy among Texel sheep.

A mechanism observed in other species as well

However, Michel Georges’ team investigated further. Pursuing the study using bioinformatic approaches, the team identified polymorphisms (common mutations) among humans and mice that are likely to act in the same way as they do in the Texel breed. It appears, therefore, that this new kind of mutation, discovered while studying sheep, could contribute significantly to the phenotypic variation observed in many species – among which humans – including the hereditary predisposition to various diseases.

Researchers at ULg have thus produced a database available online that compiles all these mutations (the Patrocles database: It will assist researchers around the world in discovering similar phenomena for other phenotypes including hereditary diseases.

Pr Michel Georges | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>