Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut reaction: Researchers define the colon’s genome

02.06.2006
For the first time, scientists describe the busy microbial world inside

For the first time, scientists have defined the collective genome of the human gut, or colon. Up to 100 trillion microbes, representing more than 1,000 species, make up a motley "microbiome" that allows humans to digest much of what we eat, including some vitamins, sugars, and fiber.

In a study published in the June 2 issue of Science, scientists at The Institute for Genomic Research (TIGR) and their colleagues describe and analyze the colon microbiome, which includes more than 60,000 genes--twice as many as found in the human genome. Some of these microbial genes code for enzymes that humans need to digest food, suggesting that bacteria in the colon co-evolved with their human host, to mutual benefit.

"The GI tract has the most abundant, diverse population of bacteria in the human body," remarks lead author Steven Gill, a molecular biologist formerly at TIGR and now at the State University of New York in Buffalo. "We’re entirely dependent on this microbial population for our well-being. A shift within this population, often leading to the absence or presence of beneficial microbes, can trigger defects in metabolism and development of diseases such as inflammatory bowel disease."

As in studies of other animals, the scientists began by collecting droppings. They collected fecal samples from two anonymous, healthy adults who’d gone without antibiotics or other medications for a year prior to the study. The researchers created DNA libraries based on the samples, generating a total of 65,059 and 74,462 sequence reads, respectively, from the two subjects. They found evidence for several hundred bacterial phylotypes, most falling into two divisions of bacteria known as Firmicutes and Actinobacteria. In addition, a microbial organism known as a methanogenic archaeon, Methanobrevibacter smithii, was prominent.

To assess the diversity of the colon microbiome, the researchers used two strategies. First, they matched their gut microbial DNA sequences up to two databases, one containing 16s rDNA gene sequences and the other containing non-redundant protein sequences. Second, they compared the colon-culled sequences to two previously sequenced human gut organisms: a bacterium, Bifidobacterium longum, and the archaeal microbe M. smithii. These known organisms showed striking similarity to much of the microbiome residents.

Based on the sequence comparisons, the researchers conclude that the human GI tract hosts multiple strains of B. longum, and a majority of its archaeal species is related M. smithii. How many unique bacterial genera or species exist in the colon community? By comparison to the outside world, Gill suspects the human gut is at least as complex as our soils or seas. With the evidence at hand, the researchers have described greater diversity in the human gut than researchers have reported for samples of acid mine drainage.

These microbes are busy, too. The new study shows that resident microbes in the colon actively synthesize vitamins and break down plant sugars, such as xylan and cellobiose (similar to cellulose), which humans could not otherwise digest because we lack the necessary enzymes. Cellobiose, for instance, is a key component of plant cell walls and thus is found in most edible plants, such as apples and carrots.

The new study advances the growing field of metagenomics, or the study of many genomes found in a given ecosystem. Scientists at TIGR and elsewhere have recently scooped up whole environmental samples, from soil to sea, to study the diverse genomes contained within them. The idea is to survey a complex community in one fell swoop, examining how whole ecosystems of genomes respond to environmental perturbations--and, in the case of humans, how microbial ecosystems contribute to health and disease.

"This study is an important first step toward identifying microbial differences between healthy people and those with conditions ranging from Crohn’s Disease to cancer," says co-author Karen Nelson of TIGR, who has previously studied the guts of termites and other animals. "We might compare different individuals, with different diets, for instance."

More broadly, the new work could become the opening salvo of a Human Microbiome Project that defines the microbial side of ourselves, suggests co-author Jeffrey Gordon, a microbiologist at Washington University in St. Louis. Gordon envisions such a project pursuing fundamental questions. How different are our microbiomes? Should differences in our microbiomes be viewed, along with our immune and nervous systems, as features of our biology that are affected by our individual environmental exposures? How is the human microbiome evolving as a function of our changing diets, lifestyle, and biosphere? Finally, how might we alter these microbial communities for better health in a person or population?

Kathryn Brown | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>