Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut reaction: Researchers define the colon’s genome

02.06.2006
For the first time, scientists describe the busy microbial world inside

For the first time, scientists have defined the collective genome of the human gut, or colon. Up to 100 trillion microbes, representing more than 1,000 species, make up a motley "microbiome" that allows humans to digest much of what we eat, including some vitamins, sugars, and fiber.

In a study published in the June 2 issue of Science, scientists at The Institute for Genomic Research (TIGR) and their colleagues describe and analyze the colon microbiome, which includes more than 60,000 genes--twice as many as found in the human genome. Some of these microbial genes code for enzymes that humans need to digest food, suggesting that bacteria in the colon co-evolved with their human host, to mutual benefit.

"The GI tract has the most abundant, diverse population of bacteria in the human body," remarks lead author Steven Gill, a molecular biologist formerly at TIGR and now at the State University of New York in Buffalo. "We’re entirely dependent on this microbial population for our well-being. A shift within this population, often leading to the absence or presence of beneficial microbes, can trigger defects in metabolism and development of diseases such as inflammatory bowel disease."

As in studies of other animals, the scientists began by collecting droppings. They collected fecal samples from two anonymous, healthy adults who’d gone without antibiotics or other medications for a year prior to the study. The researchers created DNA libraries based on the samples, generating a total of 65,059 and 74,462 sequence reads, respectively, from the two subjects. They found evidence for several hundred bacterial phylotypes, most falling into two divisions of bacteria known as Firmicutes and Actinobacteria. In addition, a microbial organism known as a methanogenic archaeon, Methanobrevibacter smithii, was prominent.

To assess the diversity of the colon microbiome, the researchers used two strategies. First, they matched their gut microbial DNA sequences up to two databases, one containing 16s rDNA gene sequences and the other containing non-redundant protein sequences. Second, they compared the colon-culled sequences to two previously sequenced human gut organisms: a bacterium, Bifidobacterium longum, and the archaeal microbe M. smithii. These known organisms showed striking similarity to much of the microbiome residents.

Based on the sequence comparisons, the researchers conclude that the human GI tract hosts multiple strains of B. longum, and a majority of its archaeal species is related M. smithii. How many unique bacterial genera or species exist in the colon community? By comparison to the outside world, Gill suspects the human gut is at least as complex as our soils or seas. With the evidence at hand, the researchers have described greater diversity in the human gut than researchers have reported for samples of acid mine drainage.

These microbes are busy, too. The new study shows that resident microbes in the colon actively synthesize vitamins and break down plant sugars, such as xylan and cellobiose (similar to cellulose), which humans could not otherwise digest because we lack the necessary enzymes. Cellobiose, for instance, is a key component of plant cell walls and thus is found in most edible plants, such as apples and carrots.

The new study advances the growing field of metagenomics, or the study of many genomes found in a given ecosystem. Scientists at TIGR and elsewhere have recently scooped up whole environmental samples, from soil to sea, to study the diverse genomes contained within them. The idea is to survey a complex community in one fell swoop, examining how whole ecosystems of genomes respond to environmental perturbations--and, in the case of humans, how microbial ecosystems contribute to health and disease.

"This study is an important first step toward identifying microbial differences between healthy people and those with conditions ranging from Crohn’s Disease to cancer," says co-author Karen Nelson of TIGR, who has previously studied the guts of termites and other animals. "We might compare different individuals, with different diets, for instance."

More broadly, the new work could become the opening salvo of a Human Microbiome Project that defines the microbial side of ourselves, suggests co-author Jeffrey Gordon, a microbiologist at Washington University in St. Louis. Gordon envisions such a project pursuing fundamental questions. How different are our microbiomes? Should differences in our microbiomes be viewed, along with our immune and nervous systems, as features of our biology that are affected by our individual environmental exposures? How is the human microbiome evolving as a function of our changing diets, lifestyle, and biosphere? Finally, how might we alter these microbial communities for better health in a person or population?

Kathryn Brown | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>