Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Identify Gene Mutation Potentially Involved in Breast Cancer Initiation

02.06.2006
Jefferson Scientists Identify Gene Mutation Potentially Involved in Breast Cancer Initiation

Researchers at Jefferson Medical College and the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia and at the Albert Einstein College of Medicine in New York have found evidence suggesting that a mutation in a gene that normally helps block the formation of breast tumors could play a role in the initiation of a major form of breast cancer.

The team, led by cell biologist Michael P. Lisanti, M.D., Ph.D., professor of cancer biology at Jefferson Medical College and Richard Pestell, M.D., Ph.D., director of Jefferson’s Kimmel Cancer Center, found that a known mutation in the Caveolin-1 gene is present in approximately 19 percent of all breast cancers that are fed by estrogen – so called “estrogen receptor-positive” cells. The group also discovered six new Caveolin-1 mutations associated with estrogen-driven breast cancers. As many as nearly 35 percent of such breast cancers may carry Caveolin-1 mutations, Dr. Lisanti says. Caveolin proteins, which play important roles in cell communication, are also involved in a number of diseases and conditions, such as cancer, atherosclerosis, diabetes, Alzheimer’s disease and muscular dystrophy.

The researchers, reporting in June 2006 in the American Journal of Pathology, say their results open up the possibility that Caveolin-1 mutations may be involved in the development of estrogen-positive human breast cancer, which accounts for some 70 percent of all breast cancers.

“This is the first demonstration that a specific Caveolin-1 mutation is exclusively connected to being estrogen-receptor positive,” says Dr. Lisanti, noting that in tests of breast tumor samples, none of those that were estrogen-receptor negative showed caveolin mutations.

“One-third of estrogen receptor-positive patients actually had caveolin mutations, making it one of the most common mutations in that population,” he says. “Usually about 70 percent of all human breast cancers are estrogen receptor-positive and 30 percent are negative. That’s one-third of the major form of human breast cancer.”

Dr. Lisanti explains that he and his colleagues had wanted to test the hypothesis that the loss of a functioning Caveolin-1 gene could increase the activity, or “upregulate” the expression of estrogen receptors. Only 5 to 10 percent of the cells in the normal human breast express estrogen receptors, yet the receptor activity for some reason rises dramatically in premalignant lesions and cancer.

Dr. Lisanti’s team developed mice lacking the Caveolin-1 gene and found a dramatic increase in both number and activity of estrogen-positive receptors in mouse breast tissue, specifically in breast epithelial cells, in turn, promoting cell growth. Caveolin-1, Dr. Lisanti suggests, could act as a kind of “switch” that regulates receptor activity and cell proliferation.

“It is the first time that we can say that the loss of function of caveolin gene expression plays a role in the specific upregulation of estrogen receptor,” he says. “It helps explain the nature of this transition from nonmalignant to malignant tissue.”

Dr. Lisanti explains that estrogen receptors are thought to help turn on certain genes such as cyclin D1, which in turn promote cancer development. “We’ve elicited a new pathway for mammary tumorigenesis,” he says. “Before, we could say that estrogen receptors turned on cyclin D1, which was enough to cause mammary tumorigenesis. Now we’ve added another link: inactivation of caveolin as the first initiation step.”

The team found that cyclin D1 activity in human breast cancer samples was increased, specifically after estrogen treatment. “In essence, we have created a preclinical model in which to study the role of estrogen and caveolin deficiency in breast cancer development,” he says. “It’s a new signaling pathway for understanding the pathogenesis of human breast cancer with caveolin gene inactivation as the initiating step. It all fits together.”

The group subsequently showed in laboratory studies that in mouse mammary cells lacking caveolin and certain growth-stimulating factors, estrogen receptors were again increased, leading them to conclude that two factors may be required for estrogen receptor upregulation: Caveolin gene inactivation and growth factor depletion.

The findings may have clinical implications. According to Dr. Lisanti, those breast cancer patients who are estrogen receptor-positive and who have caveolin mutations are much more likely to have a cancer recur than are such individuals who don’t carry caveolin gene mutations. “It’s a risk factor,” he notes.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>