Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Identify Gene Mutation Potentially Involved in Breast Cancer Initiation

02.06.2006
Jefferson Scientists Identify Gene Mutation Potentially Involved in Breast Cancer Initiation

Researchers at Jefferson Medical College and the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia and at the Albert Einstein College of Medicine in New York have found evidence suggesting that a mutation in a gene that normally helps block the formation of breast tumors could play a role in the initiation of a major form of breast cancer.

The team, led by cell biologist Michael P. Lisanti, M.D., Ph.D., professor of cancer biology at Jefferson Medical College and Richard Pestell, M.D., Ph.D., director of Jefferson’s Kimmel Cancer Center, found that a known mutation in the Caveolin-1 gene is present in approximately 19 percent of all breast cancers that are fed by estrogen – so called “estrogen receptor-positive” cells. The group also discovered six new Caveolin-1 mutations associated with estrogen-driven breast cancers. As many as nearly 35 percent of such breast cancers may carry Caveolin-1 mutations, Dr. Lisanti says. Caveolin proteins, which play important roles in cell communication, are also involved in a number of diseases and conditions, such as cancer, atherosclerosis, diabetes, Alzheimer’s disease and muscular dystrophy.

The researchers, reporting in June 2006 in the American Journal of Pathology, say their results open up the possibility that Caveolin-1 mutations may be involved in the development of estrogen-positive human breast cancer, which accounts for some 70 percent of all breast cancers.

“This is the first demonstration that a specific Caveolin-1 mutation is exclusively connected to being estrogen-receptor positive,” says Dr. Lisanti, noting that in tests of breast tumor samples, none of those that were estrogen-receptor negative showed caveolin mutations.

“One-third of estrogen receptor-positive patients actually had caveolin mutations, making it one of the most common mutations in that population,” he says. “Usually about 70 percent of all human breast cancers are estrogen receptor-positive and 30 percent are negative. That’s one-third of the major form of human breast cancer.”

Dr. Lisanti explains that he and his colleagues had wanted to test the hypothesis that the loss of a functioning Caveolin-1 gene could increase the activity, or “upregulate” the expression of estrogen receptors. Only 5 to 10 percent of the cells in the normal human breast express estrogen receptors, yet the receptor activity for some reason rises dramatically in premalignant lesions and cancer.

Dr. Lisanti’s team developed mice lacking the Caveolin-1 gene and found a dramatic increase in both number and activity of estrogen-positive receptors in mouse breast tissue, specifically in breast epithelial cells, in turn, promoting cell growth. Caveolin-1, Dr. Lisanti suggests, could act as a kind of “switch” that regulates receptor activity and cell proliferation.

“It is the first time that we can say that the loss of function of caveolin gene expression plays a role in the specific upregulation of estrogen receptor,” he says. “It helps explain the nature of this transition from nonmalignant to malignant tissue.”

Dr. Lisanti explains that estrogen receptors are thought to help turn on certain genes such as cyclin D1, which in turn promote cancer development. “We’ve elicited a new pathway for mammary tumorigenesis,” he says. “Before, we could say that estrogen receptors turned on cyclin D1, which was enough to cause mammary tumorigenesis. Now we’ve added another link: inactivation of caveolin as the first initiation step.”

The team found that cyclin D1 activity in human breast cancer samples was increased, specifically after estrogen treatment. “In essence, we have created a preclinical model in which to study the role of estrogen and caveolin deficiency in breast cancer development,” he says. “It’s a new signaling pathway for understanding the pathogenesis of human breast cancer with caveolin gene inactivation as the initiating step. It all fits together.”

The group subsequently showed in laboratory studies that in mouse mammary cells lacking caveolin and certain growth-stimulating factors, estrogen receptors were again increased, leading them to conclude that two factors may be required for estrogen receptor upregulation: Caveolin gene inactivation and growth factor depletion.

The findings may have clinical implications. According to Dr. Lisanti, those breast cancer patients who are estrogen receptor-positive and who have caveolin mutations are much more likely to have a cancer recur than are such individuals who don’t carry caveolin gene mutations. “It’s a risk factor,” he notes.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>