Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT sensor opens up study of crucial molecule

02.06.2006
MIT scientists have discovered a way to monitor a crucial molecule as it goes about its business within living cells.

The molecule, nitric oxide (NO), plays critical roles in the human body - from the destruction of invading microorganisms to the relaying of neural signals.

But catching NO at work has long eluded scientists because it often exists in minute concentrations and for only short periods of time. Now, MIT chemists have developed a bright fluorescent sensor that, in conjunction with microscopy, captures and illuminates NO in living, functioning cells.

The work, reported May 28 in the online issue of Nature Chemical Biology, will aid scientists’ understanding of how and when NO operates.

Stephen J. Lippard, the Arthur Amos Noyes Professor of Chemistry at MIT, developed the sensor with an eye toward understanding the role of NO in neural activity. But this work has broad biological applications since NO is produced throughout the body. "Our goal is to detect its formation in spatio-temporal terms, to see where and when it is produced in a cell, and in which collections of cells, and to connect its production with underlying chemical signaling events," Lippard said.

Until the 1990s, scientists mainly knew NO as a product of lightning and the combustion engine - and as an ingredient in smog. A simple molecule consisting of one nitrogen and one oxygen atom, it contains an unpaired electron that makes it highly reactive and destructive.

"Nobody thought it would be tolerated by a cell, much less used for biological purposes," Lippard said.

Then came the stunning discovery that the peculiar blood vessel relaxer Endothelial Derived Relaxation Factor, identified in the 1980s, was actually NO. NO was then unmasked in macrophages (white blood cells), tumors, bones and neurons.

In sweat and saliva it has antibacterial properties; in Viagra, rejuvenating effects. Paradoxically, NO often has contradictory behaviors. At some levels, it lowers high blood pressure, destroys invading microorganisms and tumor cells, maintains bone mass and relays neural signals. At other levels, it causes septic shock and promotes tumors, arthritis and nerve death.

These puzzles make understanding how and when NO operates in cells all the more relevant, and that requires a better means of monitoring it as cells go about their normal business. But existing assays have either been too invasive or measured NO only indirectly.

Lippard, together with graduate student Mi Hee Lim, the first author of the study, and postdoctoral researcher Dong Xu, produced a novel NO sensor by attaching a derivative of the widely used cellular imaging agent, fluorescein, to a copper atom. The resulting complex does not fluoresce until the fluorescein, in modified form, is released - which only happens in the presence of NO.

The sensor works in real time, in the aqueous, neutral pH conditions of tissues, and at the tiny nanomolar-concentrations of NO found in living cells.

How exclusive and selective is the NO detector? To find out, Lim and Xu made a mix of banana-shaped neuroblastomas and M&M-shaped macrophages, which each require different triggers to synthesize NO from a particular amino acid. When they triggered NO production in just the neuroblastomas, they could literally see that the sensor had selectively detected only those cells.

"That delighted me the most because we want to detect one cell type selectively in a heterogeneous population of cells," Lippard said.

Lippard plans to use this NO sensor to learn about the role of this elusive molecule in neurobiology. In the nervous system, a neuron releases NO at the synapse after receiving a signal from another neuron. NO then diffuses back to the pre-synaptic neuron and surrounding cells, perhaps to say: "I got the message."

"The ability to visualize nitric oxide at the nanomolar level in cells and tissues should be of tremendous benefit in determining its effects on long term potentiation (LTP) and neuronal development," commented Michael J. Clarke, a chemist at the National Science Foundation, which funded this research.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>