Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT sensor opens up study of crucial molecule

02.06.2006
MIT scientists have discovered a way to monitor a crucial molecule as it goes about its business within living cells.

The molecule, nitric oxide (NO), plays critical roles in the human body - from the destruction of invading microorganisms to the relaying of neural signals.

But catching NO at work has long eluded scientists because it often exists in minute concentrations and for only short periods of time. Now, MIT chemists have developed a bright fluorescent sensor that, in conjunction with microscopy, captures and illuminates NO in living, functioning cells.

The work, reported May 28 in the online issue of Nature Chemical Biology, will aid scientists’ understanding of how and when NO operates.

Stephen J. Lippard, the Arthur Amos Noyes Professor of Chemistry at MIT, developed the sensor with an eye toward understanding the role of NO in neural activity. But this work has broad biological applications since NO is produced throughout the body. "Our goal is to detect its formation in spatio-temporal terms, to see where and when it is produced in a cell, and in which collections of cells, and to connect its production with underlying chemical signaling events," Lippard said.

Until the 1990s, scientists mainly knew NO as a product of lightning and the combustion engine - and as an ingredient in smog. A simple molecule consisting of one nitrogen and one oxygen atom, it contains an unpaired electron that makes it highly reactive and destructive.

"Nobody thought it would be tolerated by a cell, much less used for biological purposes," Lippard said.

Then came the stunning discovery that the peculiar blood vessel relaxer Endothelial Derived Relaxation Factor, identified in the 1980s, was actually NO. NO was then unmasked in macrophages (white blood cells), tumors, bones and neurons.

In sweat and saliva it has antibacterial properties; in Viagra, rejuvenating effects. Paradoxically, NO often has contradictory behaviors. At some levels, it lowers high blood pressure, destroys invading microorganisms and tumor cells, maintains bone mass and relays neural signals. At other levels, it causes septic shock and promotes tumors, arthritis and nerve death.

These puzzles make understanding how and when NO operates in cells all the more relevant, and that requires a better means of monitoring it as cells go about their normal business. But existing assays have either been too invasive or measured NO only indirectly.

Lippard, together with graduate student Mi Hee Lim, the first author of the study, and postdoctoral researcher Dong Xu, produced a novel NO sensor by attaching a derivative of the widely used cellular imaging agent, fluorescein, to a copper atom. The resulting complex does not fluoresce until the fluorescein, in modified form, is released - which only happens in the presence of NO.

The sensor works in real time, in the aqueous, neutral pH conditions of tissues, and at the tiny nanomolar-concentrations of NO found in living cells.

How exclusive and selective is the NO detector? To find out, Lim and Xu made a mix of banana-shaped neuroblastomas and M&M-shaped macrophages, which each require different triggers to synthesize NO from a particular amino acid. When they triggered NO production in just the neuroblastomas, they could literally see that the sensor had selectively detected only those cells.

"That delighted me the most because we want to detect one cell type selectively in a heterogeneous population of cells," Lippard said.

Lippard plans to use this NO sensor to learn about the role of this elusive molecule in neurobiology. In the nervous system, a neuron releases NO at the synapse after receiving a signal from another neuron. NO then diffuses back to the pre-synaptic neuron and surrounding cells, perhaps to say: "I got the message."

"The ability to visualize nitric oxide at the nanomolar level in cells and tissues should be of tremendous benefit in determining its effects on long term potentiation (LTP) and neuronal development," commented Michael J. Clarke, a chemist at the National Science Foundation, which funded this research.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>