Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery May Speed Tree Breeding, Biotechnology

01.06.2006
Researchers have discovered the genetic controls that cause trees to stop growing and go dormant in the fall, as well as the mechanism that causes them to begin flowering and produce seeds – a major step forward in understanding the basic genetics of tree growth.

The findings were made by scientists from the Swedish University of Agricultural Sciences, Oregon State University and two other institutions, and published in the journal Science. They represent a significant fundamental advance in explaining the annual growth cycles and reproduction of trees.

By knowing the genes that control these processes, it should be possible to genetically engineer trees that flower and reproduce more quickly. The long, slow growth of trees before they produce seed has been a major stumbling block toward the types of breeding that has been common with annual crop plants. This may open the door to important advances in intensive forestry and fruit tree improvement.

Information of this type, researchers say, may also help scientists better predict how some types of trees and tree populations will respond to climate change.

“Before this we never really knew what genes were involved in the initiation of tree flowering or the cessation of growth in the fall,” said Steven Strauss, a professor of forest genetics at OSU. “At least in theory, it may now be possible to dramatically speed up tree breeding programs and strategies.

“Trees grow for a long time before they begin to produce seed, several years and sometimes decades,” he said. “Because of that, a lot of breeding approaches common with short-lived species that flower rapidly, such as corn and wheat, have been too slow to be practical.”

A remaining obstacle, Strauss said, is public understanding of the nature and safety of genetic engineering with trees, which has led to limited interest in the field by private industry and sometimes unwieldy regulations by government agencies. These genes could be used just to speed up conventional breeding, and then removed prior to commercial plantings, he said. However, the level of regulation and concern about genetic engineering may prevent even this application.

In this research, scientists studied the genes CO and FT that were first isolated from the annual plant Arabidopsis. The genes in that plant are responsible for the day-length regulation of flowering. They discovered that the same genes had been conserved through millions of years of separate evolution and also performed similar functions in aspen trees.

To their surprise, however, the researchers found that the CO/FT combination also controlled the cessation of vegetative tree growth in the fall – something that Arabidopsis plants, which die after a single growing season, do not need to do.

These processes, scientists say, reflect a critical tradeoff between tree growth and survival. Temperate trees have to stop growing and go dormant in the winter or they literally freeze to death.

“From an evolutionary perspective, it’s easy to understand why forest trees don’t flower and produce seed and pollen earlier,” Strauss said. “When they are young, the trees that survive need to focus their energy on growth and height in order to compete for sunlight with other trees, and only later in their life do they divert energy to produce seed.”

Strauss noted that for the same reasons, any releases of such early-flowering genes into wild populations are unlikely to be of ecological concern, as trees bearing them would have a competitive disadvantage when growing with wild forest trees, and thus would not spread to any significant degree.

It also appears that the CO/FT genetic combination is critical to help trees adapt to local conditions, the researchers found. They studied aspen trees from different populations, and found that trees adapted to colder northern climates shut down growth earlier in the summer to prepare for long, harsh winters. The genetic mechanisms that adapt trees to these conditions and control it are so strong that trees will behave about the same even if they are transplanted to warmer regions, the scientists say.

For applied research, Strauss said, researchers can now induce activation of the FT gene earlier, so that trees will reproduce at much younger ages – months instead of years – and better lend themselves to conventional genetic manipulation. It could be possible, he said, to more rapidly breed some desirable traits, and then, via normal sexual crosses, remove the FT gene to leave behind trees that no longer have it, nor reproduce abnormally early.

In other cases, a modestly strong FT gene might be left in place to provide sustained benefits, such as earlier or more heavily flowering fruit tree varieties. Especially in situations where conventional approaches are ineffective, the gene could provide a new option for modifying flower and fruit production, which fruit tree breeders do routinely.

A better understanding of these processes could also provide information about how trees may react and adapt to climate change, or perhaps identify tree populations based on their DNA that are most at risk. Such populations might benefit from accelerated breeding or transplantation to aid their survival. This would give ecologists and conservation geneticists more tools to work with, Strauss said.

Other collaborators on this research were from the Virginia Tech Department of Forestry, and the Department of Plant Physiology at Umea University in Sweden. Funding was provided by the Swedish Foundation for Strategic Research, Swedish Research Council and the U.S. Department of Agriculture.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class teaching and learning center. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests. Media Contact
David Stauth,
541-737-0787
Source
Steven Strauss,
541-737-6578

Steve Strauss | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>