Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery May Speed Tree Breeding, Biotechnology

01.06.2006
Researchers have discovered the genetic controls that cause trees to stop growing and go dormant in the fall, as well as the mechanism that causes them to begin flowering and produce seeds – a major step forward in understanding the basic genetics of tree growth.

The findings were made by scientists from the Swedish University of Agricultural Sciences, Oregon State University and two other institutions, and published in the journal Science. They represent a significant fundamental advance in explaining the annual growth cycles and reproduction of trees.

By knowing the genes that control these processes, it should be possible to genetically engineer trees that flower and reproduce more quickly. The long, slow growth of trees before they produce seed has been a major stumbling block toward the types of breeding that has been common with annual crop plants. This may open the door to important advances in intensive forestry and fruit tree improvement.

Information of this type, researchers say, may also help scientists better predict how some types of trees and tree populations will respond to climate change.

“Before this we never really knew what genes were involved in the initiation of tree flowering or the cessation of growth in the fall,” said Steven Strauss, a professor of forest genetics at OSU. “At least in theory, it may now be possible to dramatically speed up tree breeding programs and strategies.

“Trees grow for a long time before they begin to produce seed, several years and sometimes decades,” he said. “Because of that, a lot of breeding approaches common with short-lived species that flower rapidly, such as corn and wheat, have been too slow to be practical.”

A remaining obstacle, Strauss said, is public understanding of the nature and safety of genetic engineering with trees, which has led to limited interest in the field by private industry and sometimes unwieldy regulations by government agencies. These genes could be used just to speed up conventional breeding, and then removed prior to commercial plantings, he said. However, the level of regulation and concern about genetic engineering may prevent even this application.

In this research, scientists studied the genes CO and FT that were first isolated from the annual plant Arabidopsis. The genes in that plant are responsible for the day-length regulation of flowering. They discovered that the same genes had been conserved through millions of years of separate evolution and also performed similar functions in aspen trees.

To their surprise, however, the researchers found that the CO/FT combination also controlled the cessation of vegetative tree growth in the fall – something that Arabidopsis plants, which die after a single growing season, do not need to do.

These processes, scientists say, reflect a critical tradeoff between tree growth and survival. Temperate trees have to stop growing and go dormant in the winter or they literally freeze to death.

“From an evolutionary perspective, it’s easy to understand why forest trees don’t flower and produce seed and pollen earlier,” Strauss said. “When they are young, the trees that survive need to focus their energy on growth and height in order to compete for sunlight with other trees, and only later in their life do they divert energy to produce seed.”

Strauss noted that for the same reasons, any releases of such early-flowering genes into wild populations are unlikely to be of ecological concern, as trees bearing them would have a competitive disadvantage when growing with wild forest trees, and thus would not spread to any significant degree.

It also appears that the CO/FT genetic combination is critical to help trees adapt to local conditions, the researchers found. They studied aspen trees from different populations, and found that trees adapted to colder northern climates shut down growth earlier in the summer to prepare for long, harsh winters. The genetic mechanisms that adapt trees to these conditions and control it are so strong that trees will behave about the same even if they are transplanted to warmer regions, the scientists say.

For applied research, Strauss said, researchers can now induce activation of the FT gene earlier, so that trees will reproduce at much younger ages – months instead of years – and better lend themselves to conventional genetic manipulation. It could be possible, he said, to more rapidly breed some desirable traits, and then, via normal sexual crosses, remove the FT gene to leave behind trees that no longer have it, nor reproduce abnormally early.

In other cases, a modestly strong FT gene might be left in place to provide sustained benefits, such as earlier or more heavily flowering fruit tree varieties. Especially in situations where conventional approaches are ineffective, the gene could provide a new option for modifying flower and fruit production, which fruit tree breeders do routinely.

A better understanding of these processes could also provide information about how trees may react and adapt to climate change, or perhaps identify tree populations based on their DNA that are most at risk. Such populations might benefit from accelerated breeding or transplantation to aid their survival. This would give ecologists and conservation geneticists more tools to work with, Strauss said.

Other collaborators on this research were from the Virginia Tech Department of Forestry, and the Department of Plant Physiology at Umea University in Sweden. Funding was provided by the Swedish Foundation for Strategic Research, Swedish Research Council and the U.S. Department of Agriculture.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class teaching and learning center. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests. Media Contact
David Stauth,
541-737-0787
Source
Steven Strauss,
541-737-6578

Steve Strauss | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>