Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bugs enjoy hamster sex

19.11.2001


Bacteria mate using a timely protruding phallus.
© SPL


Mammalian cells rarely take bacteria up on their offer of DNA.
© Photodisc


Bacteria caught mating with mammalian cells.

Cross-species coupling is generally frowned upon. But in the liberal labs of California it is actively being encouraged. Bugs that are persuaded to get down and dirty with hamster cells are rewriting sex manuals in the act.

Like humans, bacteria mate using a timely protruding phallus. It suckers a nearby bacterium and drags it close enough to shoot in DNA - a process called conjugation.



Although bacteria have been persuaded in the past to share DNA with plants and yeast, they had never been caught at it with mammalian cells before. For Virginia Waters of the University of California, San Diego, persistence paid off. She laid Escherichia coli on top of hamster cells and allowed them to get intimate: "You leave them overnight," she says.

Waters showed the bacteria had transferred DNA by tracking a gene that makes green fluorescent protein. Post-coital hamster cells literally light up1.

Free and easy

For years bacteria were assumed to be picky about their partners, says George Sprague of the University of Oregon in Eugene. Their surfaces were thought to be too dissimilar to get close to other cells. "People had a mindset that this was something bacteria enjoyed with each other," he says.

The soil bacterium Agrobacterium tumefaciens regularly indulges with plants cells, it later emerged. And in 1989, Sprague showed bacteria’s willingness to try it on with yeast2. "It was a surprise to the scientific community," he says. Pairing up bacteria with mammalian cells "seemed like the ultimate sexy experiment".

The secret to a fertile union lies in carefully detecting the rare deviants, thinks Waters - only around 1 in 10,000 mammalian cells. She also engineered the promiscuous bacteria to contain circular DNA (a plasmid) that could survive and replicate in the recipient hamster cell.

Waters’s results suggest that bacteria try their luck with mammalian cells all the time. But there is little evidence that such matings are fruitful - reports of bacterial genes transferred directly into the human genome are disputed3,4.

Bacteria commonly conjugate to exchange survival genes, such as those that confer antibiotic resistance. But for a gene to jump permanently into a mammalian genome it would have to be transferred from bacteria into a sperm or egg, integrated into its genome and passed on to the next generation.

Although this is possible, it is probably very rare, suggests Jean-Marc Ghigo, who studies conjugation at the Pasteur Institute in Paris. And unlike the engineered DNA used in Waters’s experiment, wild bacterial DNA may be degraded by the recipient cell - an innate prophylactic.

Sex therapy

Waters hopes to exploit bacteria’s wanton ways for gene therapy - the transfer of healthy genes into human cells to compensate for defective ones causing disease. In the lungs, for example, resident bacteria could be modified to carry and transfer genes such as the one that is faulty in the lung disease cystic fibrosis.

"It could be a powerful way to deliver DNA," agrees Ghigo. Large populations of bacteria constantly attempting sex might have more success than a single dose of another gene-delivery drug.

Gene-therapy researcher Stephen Hyde at the University of Oxford, UK, is more doubtful. Thick protective mucous might stop the bacteria getting close to lung cells, he points out. Introducing bacteria into the body and transferring unwanted bacterial genes might also be risks.

In the lab, conjugation could be a way to transfer large pieces of DNA into mammalian cells. Such transfers are currently difficult, says Hyde, as the DNA tends to break easily.

Fertility aside

Conjugation was first reported in 1946, winning its voyeur, Joshua Lederberg, a Nobel prize. The plasmid that carries the genes responsible was named the fertility factor.

The transfer of circular DNA always starts at a defined point. By interrupting mating bugs at regular intervals, geneticists were able to work out which genes had been passed over. Hence the first map of the E.coli chromosome was measured in minutes rather than megabases.

References

  1. Waters, V. L.Conjugation between bacterial and mammalian cells. Nature Genetics, DOI: 10.1038/ng779 (2001).
  2. Heinemann, J. A. & Sprague, G. F. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature, 340, 205 - 209, (1989).
  3. Salzberg, S. L., White, O., Peterson, A. J. & Eisen, J. A.. Micorobial genes in the human genome: lateral transfer or gene loss? Science, 292, 1903 - 1906, (2001).
  4. Stanhope, M. J. et al. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature, 411, 940 - 944, (2001).


HELEN PEARSON | Nature News Service
Further information:
http://www.nature.com/nsu/011122/011122-4.html

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>