Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bugs enjoy hamster sex

19.11.2001


Bacteria mate using a timely protruding phallus.
© SPL


Mammalian cells rarely take bacteria up on their offer of DNA.
© Photodisc


Bacteria caught mating with mammalian cells.

Cross-species coupling is generally frowned upon. But in the liberal labs of California it is actively being encouraged. Bugs that are persuaded to get down and dirty with hamster cells are rewriting sex manuals in the act.

Like humans, bacteria mate using a timely protruding phallus. It suckers a nearby bacterium and drags it close enough to shoot in DNA - a process called conjugation.



Although bacteria have been persuaded in the past to share DNA with plants and yeast, they had never been caught at it with mammalian cells before. For Virginia Waters of the University of California, San Diego, persistence paid off. She laid Escherichia coli on top of hamster cells and allowed them to get intimate: "You leave them overnight," she says.

Waters showed the bacteria had transferred DNA by tracking a gene that makes green fluorescent protein. Post-coital hamster cells literally light up1.

Free and easy

For years bacteria were assumed to be picky about their partners, says George Sprague of the University of Oregon in Eugene. Their surfaces were thought to be too dissimilar to get close to other cells. "People had a mindset that this was something bacteria enjoyed with each other," he says.

The soil bacterium Agrobacterium tumefaciens regularly indulges with plants cells, it later emerged. And in 1989, Sprague showed bacteria’s willingness to try it on with yeast2. "It was a surprise to the scientific community," he says. Pairing up bacteria with mammalian cells "seemed like the ultimate sexy experiment".

The secret to a fertile union lies in carefully detecting the rare deviants, thinks Waters - only around 1 in 10,000 mammalian cells. She also engineered the promiscuous bacteria to contain circular DNA (a plasmid) that could survive and replicate in the recipient hamster cell.

Waters’s results suggest that bacteria try their luck with mammalian cells all the time. But there is little evidence that such matings are fruitful - reports of bacterial genes transferred directly into the human genome are disputed3,4.

Bacteria commonly conjugate to exchange survival genes, such as those that confer antibiotic resistance. But for a gene to jump permanently into a mammalian genome it would have to be transferred from bacteria into a sperm or egg, integrated into its genome and passed on to the next generation.

Although this is possible, it is probably very rare, suggests Jean-Marc Ghigo, who studies conjugation at the Pasteur Institute in Paris. And unlike the engineered DNA used in Waters’s experiment, wild bacterial DNA may be degraded by the recipient cell - an innate prophylactic.

Sex therapy

Waters hopes to exploit bacteria’s wanton ways for gene therapy - the transfer of healthy genes into human cells to compensate for defective ones causing disease. In the lungs, for example, resident bacteria could be modified to carry and transfer genes such as the one that is faulty in the lung disease cystic fibrosis.

"It could be a powerful way to deliver DNA," agrees Ghigo. Large populations of bacteria constantly attempting sex might have more success than a single dose of another gene-delivery drug.

Gene-therapy researcher Stephen Hyde at the University of Oxford, UK, is more doubtful. Thick protective mucous might stop the bacteria getting close to lung cells, he points out. Introducing bacteria into the body and transferring unwanted bacterial genes might also be risks.

In the lab, conjugation could be a way to transfer large pieces of DNA into mammalian cells. Such transfers are currently difficult, says Hyde, as the DNA tends to break easily.

Fertility aside

Conjugation was first reported in 1946, winning its voyeur, Joshua Lederberg, a Nobel prize. The plasmid that carries the genes responsible was named the fertility factor.

The transfer of circular DNA always starts at a defined point. By interrupting mating bugs at regular intervals, geneticists were able to work out which genes had been passed over. Hence the first map of the E.coli chromosome was measured in minutes rather than megabases.

References

  1. Waters, V. L.Conjugation between bacterial and mammalian cells. Nature Genetics, DOI: 10.1038/ng779 (2001).
  2. Heinemann, J. A. & Sprague, G. F. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature, 340, 205 - 209, (1989).
  3. Salzberg, S. L., White, O., Peterson, A. J. & Eisen, J. A.. Micorobial genes in the human genome: lateral transfer or gene loss? Science, 292, 1903 - 1906, (2001).
  4. Stanhope, M. J. et al. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature, 411, 940 - 944, (2001).


HELEN PEARSON | Nature News Service
Further information:
http://www.nature.com/nsu/011122/011122-4.html

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>