Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism explains glucose effect on wakefulness

01.06.2006
One of the body’s basic survival mechanisms is the neural machinery that triggers the hungry brain to the alertness needed for seeking food. That same machinery swings the other way after a hearty meal, as exemplified by the long and honored custom of the siesta. However, scientists have understood little about how the basic energy molecule, glucose, regulates such wakefulness and other energy-related behaviors.

Now, in an article in the June 1, 2006, Neuron, Denis Burdakov of the University of Manchester and his colleagues have pinpointed how glucose inhibits neurons that are key to regulating wakefulness. In the process, they have discovered a role for a class of potassium ion channels whose role has remained largely unknown. Such ion channels are porelike proteins in the cell membrane that affect cellular responses by controlling the flow of potassium into the cell.

The researchers set out to discover how glucose inhibits a particular class of glucose-sensing neurons that produce tiny proteins called orexins, which are central regulators of states of consciousness.

Wrote Burdakov and colleagues, "These cells are critical for responding to the ever-changing body-energy state with finely orchestrated changes in arousal, food seeking, hormone release, and metabolic rate, to ensure that the brain always has adequate glucose."

Malfunction of orexin neurons can lead to narcolepsy and obesity, and researchers have also found evidence that orexin neurons play a role in learning, reward-seeking, and addiction, wrote the researchers.

"Considering these crucial roles of orexin neurons, their recently described inhibition by glucose is likely to have considerable implications for the regulation of states of consciousness and energy balance," wrote Burdakov and his colleagues. "However, as in other glucose-inhibited neurons, it is unknown how glucose suppresses the electrical activity of orexin cells." What’s more, they wrote, "Because the sensitivity of orexin cell firing to the small changes in extracellular glucose that occur between normal meals has never been tested, the daily physiological relevance of their glucose sensing is also unknown."

In their experiments, the researchers engineered mice to produce a fluorescent protein only in orexin neurons. Thus, the researchers could isolate the neurons in brain slices from the mice and perform precise biochemical and electrophysiological studies to explore how glucose acted on those neurons. In particular, the researchers performed experiments in which they exposed the neurons to the subtle changes in glucose levels known to occur in daily cycles of hunger and eating.

Their experiments showed that glucose inhibits orexin neurons by acting on a class of potassium ion channels known as "tandem pore" channels, about which little was known.

"Together, these results identify an unexpected physiological role for the recently characterized [tandem pore potassium] channels and shed light on the long-elusive mechanism of glucose inhibition, thus providing new insights into cellular pathways regulating vigilance states and energy balance," wrote Burdakov and colleagues.

"These results provide evidence that the firing rate of orexin cells is sensitive to changes in glucose that correspond to fluctuations occurring normally during the day and also show that the same electrical mechanism is involved in sensing both subtle and extreme changes in glucose," they wrote.

What’s more, they wrote, their finding that subtle changes in glucose levels affect firing of orexin "raises the possibility that, besides being important for adaptive responses to starvation, modulation of orexin cells by glucose has a much wider behavioral role, contributing to the continuous daily readjustments in the level of arousal and alertness."

The researchers concluded that their findings "provide important new insights into how the brain tunes arousal and metabolism according to body-energy levels."

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>