Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism explains glucose effect on wakefulness

01.06.2006
One of the body’s basic survival mechanisms is the neural machinery that triggers the hungry brain to the alertness needed for seeking food. That same machinery swings the other way after a hearty meal, as exemplified by the long and honored custom of the siesta. However, scientists have understood little about how the basic energy molecule, glucose, regulates such wakefulness and other energy-related behaviors.

Now, in an article in the June 1, 2006, Neuron, Denis Burdakov of the University of Manchester and his colleagues have pinpointed how glucose inhibits neurons that are key to regulating wakefulness. In the process, they have discovered a role for a class of potassium ion channels whose role has remained largely unknown. Such ion channels are porelike proteins in the cell membrane that affect cellular responses by controlling the flow of potassium into the cell.

The researchers set out to discover how glucose inhibits a particular class of glucose-sensing neurons that produce tiny proteins called orexins, which are central regulators of states of consciousness.

Wrote Burdakov and colleagues, "These cells are critical for responding to the ever-changing body-energy state with finely orchestrated changes in arousal, food seeking, hormone release, and metabolic rate, to ensure that the brain always has adequate glucose."

Malfunction of orexin neurons can lead to narcolepsy and obesity, and researchers have also found evidence that orexin neurons play a role in learning, reward-seeking, and addiction, wrote the researchers.

"Considering these crucial roles of orexin neurons, their recently described inhibition by glucose is likely to have considerable implications for the regulation of states of consciousness and energy balance," wrote Burdakov and his colleagues. "However, as in other glucose-inhibited neurons, it is unknown how glucose suppresses the electrical activity of orexin cells." What’s more, they wrote, "Because the sensitivity of orexin cell firing to the small changes in extracellular glucose that occur between normal meals has never been tested, the daily physiological relevance of their glucose sensing is also unknown."

In their experiments, the researchers engineered mice to produce a fluorescent protein only in orexin neurons. Thus, the researchers could isolate the neurons in brain slices from the mice and perform precise biochemical and electrophysiological studies to explore how glucose acted on those neurons. In particular, the researchers performed experiments in which they exposed the neurons to the subtle changes in glucose levels known to occur in daily cycles of hunger and eating.

Their experiments showed that glucose inhibits orexin neurons by acting on a class of potassium ion channels known as "tandem pore" channels, about which little was known.

"Together, these results identify an unexpected physiological role for the recently characterized [tandem pore potassium] channels and shed light on the long-elusive mechanism of glucose inhibition, thus providing new insights into cellular pathways regulating vigilance states and energy balance," wrote Burdakov and colleagues.

"These results provide evidence that the firing rate of orexin cells is sensitive to changes in glucose that correspond to fluctuations occurring normally during the day and also show that the same electrical mechanism is involved in sensing both subtle and extreme changes in glucose," they wrote.

What’s more, they wrote, their finding that subtle changes in glucose levels affect firing of orexin "raises the possibility that, besides being important for adaptive responses to starvation, modulation of orexin cells by glucose has a much wider behavioral role, contributing to the continuous daily readjustments in the level of arousal and alertness."

The researchers concluded that their findings "provide important new insights into how the brain tunes arousal and metabolism according to body-energy levels."

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>