Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism explains glucose effect on wakefulness

01.06.2006
One of the body’s basic survival mechanisms is the neural machinery that triggers the hungry brain to the alertness needed for seeking food. That same machinery swings the other way after a hearty meal, as exemplified by the long and honored custom of the siesta. However, scientists have understood little about how the basic energy molecule, glucose, regulates such wakefulness and other energy-related behaviors.

Now, in an article in the June 1, 2006, Neuron, Denis Burdakov of the University of Manchester and his colleagues have pinpointed how glucose inhibits neurons that are key to regulating wakefulness. In the process, they have discovered a role for a class of potassium ion channels whose role has remained largely unknown. Such ion channels are porelike proteins in the cell membrane that affect cellular responses by controlling the flow of potassium into the cell.

The researchers set out to discover how glucose inhibits a particular class of glucose-sensing neurons that produce tiny proteins called orexins, which are central regulators of states of consciousness.

Wrote Burdakov and colleagues, "These cells are critical for responding to the ever-changing body-energy state with finely orchestrated changes in arousal, food seeking, hormone release, and metabolic rate, to ensure that the brain always has adequate glucose."

Malfunction of orexin neurons can lead to narcolepsy and obesity, and researchers have also found evidence that orexin neurons play a role in learning, reward-seeking, and addiction, wrote the researchers.

"Considering these crucial roles of orexin neurons, their recently described inhibition by glucose is likely to have considerable implications for the regulation of states of consciousness and energy balance," wrote Burdakov and his colleagues. "However, as in other glucose-inhibited neurons, it is unknown how glucose suppresses the electrical activity of orexin cells." What’s more, they wrote, "Because the sensitivity of orexin cell firing to the small changes in extracellular glucose that occur between normal meals has never been tested, the daily physiological relevance of their glucose sensing is also unknown."

In their experiments, the researchers engineered mice to produce a fluorescent protein only in orexin neurons. Thus, the researchers could isolate the neurons in brain slices from the mice and perform precise biochemical and electrophysiological studies to explore how glucose acted on those neurons. In particular, the researchers performed experiments in which they exposed the neurons to the subtle changes in glucose levels known to occur in daily cycles of hunger and eating.

Their experiments showed that glucose inhibits orexin neurons by acting on a class of potassium ion channels known as "tandem pore" channels, about which little was known.

"Together, these results identify an unexpected physiological role for the recently characterized [tandem pore potassium] channels and shed light on the long-elusive mechanism of glucose inhibition, thus providing new insights into cellular pathways regulating vigilance states and energy balance," wrote Burdakov and colleagues.

"These results provide evidence that the firing rate of orexin cells is sensitive to changes in glucose that correspond to fluctuations occurring normally during the day and also show that the same electrical mechanism is involved in sensing both subtle and extreme changes in glucose," they wrote.

What’s more, they wrote, their finding that subtle changes in glucose levels affect firing of orexin "raises the possibility that, besides being important for adaptive responses to starvation, modulation of orexin cells by glucose has a much wider behavioral role, contributing to the continuous daily readjustments in the level of arousal and alertness."

The researchers concluded that their findings "provide important new insights into how the brain tunes arousal and metabolism according to body-energy levels."

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>