Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Colorful, Rare-Patterned Male Guppies Have Survival Advantage In The Wild

Any owner of a freshwater aquarium likely has had guppies (Poecilia reticulata), those small brightly colored fish with a propensity for breeding. Now guppy populations manipulated in natural habitats in Trinidad have taught researchers an evolutionary lesson on the survival of a rare genetic trait.

Reporting in the June 1 issue of the journal Nature, scientists from six institutions detail how male guppies with the most colorful - and most rare - patterns are more likely than their more commonly colored counterparts to survive in the wild.

"This study provides very solid support for frequency-dependent survival," said principal investigator Kimberly A. Hughes, an animal biologist at the University of Illinois at Urbana-Champaign. "We found that rare color patterns of these guppies had a highly significant survival advantage."

In evolutionary terms, frequency-dependent survival means that individuals with rare gene variants have a survival advantage relative to common variants, simply as a function of being rare. This process is important because it leads to the maintenance of many different variants (polymorphism) in the same population.

The same process could be important in the maintenance of genetic variants in humans, said Hughes, who also is a member of the Institute for Genomic Biology at Illinois.

For example, she said, it has been hypothesized that genes involved in pathogen resistance (the Human Leukocyte Antigen or HLA genes) are highly polymorphic because pathogens are most successful at attacking individuals with common variants, and individuals with rare variants have higher survival.

However, the theory is difficult to test, and, in general, frequency-dependent survival has been difficult to document as an important process in nature, Hughes said.

The guppy system provided a way to test whether this kind of selection could really promote polymorphism in a natural setting, because guppies are highly polymorphic for a visible trait and they are easy to work with in field experiments.

Researchers conducted 34 separate manipulations across 19 replicate pools in three streams over four years. They collected guppies from two tributaries of the Quare River and the main branch of the Mausica River, sorted the males and females, and then returned them to the streams.

"We had two different color patterns at a particular site," Hughes said. "In half the replicates we made pattern 1 rare and pattern 2 common, and in the other replicates we made pattern 2 rare and pattern 1 common. This allowed us to determine that it was rarity itself, and not any specific aspect of the color pattern that had the biggest effect on survival. No matter which pattern was rare or common, the rare type had higher survival."

After 15 or 17 days, depending on location, the researchers again sought and captured all adult-sized guppies from the streams. The rare males had higher survival at all three sites. Overall, 84 percent of the rare-type males survived to the end of the experiment, while only 69 percent of the common-type males survived.

The most important source of mortality in wild guppies is predation by larger fish species that live in the same streams. "It’s possible that guppy predators, which are known to hunt visually, may be more focused on common color patterns," Hughes said.

"Predators can form ’search images’ of the most common prey types, and can be less efficient at locating and capturing prey that look different from the norm," she said. "These predators have limited attention. Perhaps this generates a frequency-dependent predation pattern that by its very operation acts to maintain polymorphism."

An alternative theory is that male guppies altered their own behavior in response to the manipulated changes in their common vs. rare numbers, and that the changed behaviors affected predation, the authors wrote. They suggest new experiments to study behaviors in both predators and prey to determine which theory is at work.

In earlier studies, Hughes and colleagues had shown that female guppies prefer to mate with males with color patterns novel to the females. It could be, the authors surmise in the Nature paper, that females might prefer the rare males because mating with them lowers their own risk to predation.

The six co-authors with Hughes were: Robert Olendorf, a postdoctoral researcher in the School of Integrative Biology at Illinois; F. Helen Rodd and David Punzalan, department of zoology at the University of Toronto; Anne E. Houde, department of biology at Lake Forest College in Illinois; Carla Hurt of the Smithsonian Tropical Research Institute, Naos Marine Laboratory, Panama City, Panama; and David N. Reznick, department of biology, University of California at Riverside.

The work was supported by grants from the National Science Foundation to Hughes, Houde and Reznick, and by a grant from the Natural Sciences and Engineering Research Council of Canada to Rodd. During 1996, Hughes also was supported by a National Research Service Fellowship from the National Institutes of Health, and Rodd by a grant from the Center for Population Biology at the University of California at Davis.

Jim Barlow | University of Illinois
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>