Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pathways for autoimmune treatment identified

30.05.2006
A rare genetic defect that can trigger a host of diseases from type 1 diabetes to alopecia has helped explain the imbalance of immune regulator and killer cells in autoimmune disease.

Mutation in the Aire gene causes APS1, a disease causing two out of three problems – an underactive parathyroid, yeast infection of the skin and/or mucous membrane and adrenal gland insufficiency – by age 5 and up to 16 autoimmune diseases over a lifetime.


The same mutation causes a defect in iNKT cells, a type of regulatory cell that helps the immune system fight infections while suppressing errant T cells bent on attacking the body, Medical College of Georgia researchers say.

This finding opens new pathways for treating or preventing APS1, or autoimmune polyglandular syndrome type 1, and potentially other autoimmune diseases as well, researchers report in the June issue of Nature Medicine.

“The body should maintain a balance between killing and suppression,” says Dr. Qing-Sheng Mi, immunologist and lead and co-senior author. “If you are killing too hard, it can induce autoimmune disease. If you regulate suppression too hard, you can get cancer. iNKT cells help maintain a healthy balance. But patients with autoimmune disease may not have enough functional iNKT cells.”

“Aire controls the development and function of iNKT cells,” says Drs. Jin-Xiong She, director of the MCG Center for Biotechnology and Genomic Medicine and co-senior author. “This relationship means that iNKT cells are critical to most autoimmune diseases and manipulating the iNKT cell population is one possible way to cure autoimmune disease.”

A lipid purified from sea plants, called alpha-GalCer, is already under study as a way to boost iNKT cell numbers and fight autoimmune disease as well as cancer. iNKT cells’ reactivity to alpha-GalCer, prompted the scientists to use it as a marker to examine the status of these cells in a mouse missing the Aire gene. That Aire knockout is a good model for humans with APS1.

They found significantly fewer iNKT cells in the thymus, spleen, liver and bone marrow and severely impaired maturation of those cells in mice missing the Aire gene. And the mice given alpha-GalCer had significantly reduced autoantibody production.

In 2001, Dr. Terry L. Delovitch and his colleagues at Canada’s Robarts Research Institute, including Dr. Mi, reported in Nature Medicine that using alpha-GalCer to boost iNKT cells and re-establish a healthy balance of good and bad immune cells prevented development of type 1 diabetes in an animal model for the disease.

But Drs. Mi and She say new iNKT boosters likely are needed because the action of alpha-GalCer somehow depends on individual genetic architecture as well as other factors. Under certain conditions, the drug can help or worsen an autoimmune disease by producing good or bad cytokines. That’s why it also has worked for some cancers and why a modified version of the glycolipid or totally different drugs may work better, Dr. She says. “By understanding more, we are better able to come up with better targets,” he says.

“iNKT development is still the big question,” says Dr. Mi. “Not only how they develop, but how they develop properly.”

The researchers watched the key regulatory cells come out of the bone marrow and go to the thymus where all T cells go for a process of positive and negative selection and maturation. Positive selection eliminates cells that are dysfunctional. Negative selection is eliminating T-cells that recognize the body’s own proteins, Dr. She says.

Other researchers recently confirmed that the Aire gene is involved in negative selection by controlling some protein expression in the thymus, Dr. Mi says. The thymus is supposed to express most body proteins so any T cells that would react to them can be eliminated through negative selection, he says. “But Aire’s role in protein expression is not sufficient to explain all the clinical symptoms of patients with APS1,” Dr. Mi says. “The Aire gene must have other immune functions.”

iNKT cells also go through a development process but via a somewhat different path than that of other T cells. MCG researchers have learned medullary epithelial cells in the thymus are critical to proper iNKT cell development. A defective Aire gene disrupts this natural nurturing relationship by disrupting medullary epithelial cell function, leading to insufficient numbers of iNKT cells.

“Whether or not you develop autoimmune disease to a large degree depends on the balance of these bad T cells that recognize the body’s own protein and regulatory T cells,” Dr. She says. “It’s all about balance.”

Dr. Mi received a Junior Faculty Travel Award from the American Association of Immunologists for the iNKT research during the association’s annual meeting in May.

The research was supported by the American Diabetes Association, the Juvenile Diabetes Research Foundation, the National Institutes of Health and the Canadian Institutes of Health Research.

Co-authors include Drs. Zhong-Bin Deng, Sunil K. Jushi, Zai-Zhai Wang, Li Zhou, Sarah Eckenrode, Ratnmani Joshi as well as Bing Yi from MCG and Dr. Delovitch and Ph.D candidate Dalam Ly from the Robarts Research Institute and the University of Western Ontario.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>