Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae’s Protein “Tails” Create Motion – and Aid Munching

30.05.2006
When single-celled organisms such as sperm crack their whip-like appendages called flagella, the beating sets them in motion. But in certain colonies of green algae, flagella also boost nutrient uptake, according to surprising new research.

In the early online edition of the Proceedings of the National Academy of Sciences, researchers from the University of Arizona and Brown University explain how flagella allow these algae to get the energy they need to multiply and create colonies – the critical secret that allowed them to evolve into multicellular organisms.


Munching in motion
The beating flagella of a Volvox colony creates a flow of water around it, visible here through the use of miniscule, illuminated plastic beads. The coordinated beating of flagella creates a nutrient-rich environment for the colony. Image: University of Arizona

“This is the first evidence that flagella not only help organisms move, but can help them feed at a rate that allowed them to evolve to a larger size,” said Thomas Powers, an assistant professor of engineering at Brown who studies microorganisms in motion. “This is a critical piece of information, since understanding how one-celled life forms evolve into many-celled ones is a fundamental question in biology.”

The team studied a group of green algae known as the volvocines, organisms so common they can be found in puddles of rain. Biologists study the group, which runs the gamut from single-celled organisms to teeming colonies, to understand how cells differentiate and multiply. But how did the volvocines jump from solo cells to Volvox, a colony of as many as 50,000 cells?

It’s a puzzler of a question, given the size of a Volvox colony and the laws of physics. Bigger organisms need more energy – a lot more energy – to survive. And Volvox is the largest colony that the volvocines make, a giant ball of flagella-waving body guards protecting a small cluster of reproductive cells. When the radius of the spherical colony increases by a factor of two, the area of the sphere increases by a factor of four. So it follows that the energy demands for Volvox would quadruple, too, as it grows.

Yet microscopic organisms such as volvocines get nutrients through diffusion, a process by which bits of food bump into the cell and pass through the cell membrane. Doubling the radius of the colony doubles – not quadruples – the colony’s food intake rate. So a large organism such as a Volvox colony shouldn’t survive because it would demand more energy than passive feeding could supply, a conundrum that researchers refer to as the “bottleneck problem.”

The research team had a hunch that flagella somehow played a role in bringing in nutrients needed for Volvox to grow and survive. Raymond Goldstein, a professor of physics and applied mathematics at the University of Arizona, gathered together a group of scientists with expertise in physics, mathematics, engineering and biology to work on the problem.

The team created a mathematical model that allowed them to calculate how the flagella created a flow of water around the colony and verified this prediction with experimental measurements. Then they used the model to show that the coordinated beating of the flagella concentrated the nutrients just ahead of the moving colony. The colony plows into this nutrient-rich region and leaves a plume of waste in its wake.

So a Volvox colony doesn’t just passively feed, it actively increases the concentration of nutrients around it using its flagella. Put another way, these tiny protein whips not only acts as legs, but also as arms, gathering in food the colony needs to grow and thrive.

Powers, brought in to help with biomechanical theory, said the surprise in the finding is that the nutrient current created by Volvox was proportional to the surface area of the colony. In other words, Volvox met its rapidly increasing demand for nutrients through flagellar beating, allowing the organism to make the multicellular leap.

“Previous models would have predicted that the nutrient demands of Volvox would outstrip the supply,” Powers said. “But we showed that metabolic supply can, in fact, keep up with metabolic demand. The colony beat the bottleneck problem. Its increasing size is actually an advantage, allowing it to create a faster flow of nutrients.”

The National Science Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>