Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Still more accurate after all these years

29.05.2006
Researchers at the National Institute of Standards and Technology (NIST) have developed an improved method for measuring basic properties of complex fuel mixtures like gasoline or jet fuel.

The new apparatus for measuring distillation properties produces significantly more detailed and accurate data needed to better understand each fuel and its sample-to-sample variation. The data are valuable in tailoring fuels for high-performance and low emissions, and in designing new fuels, engines and emission controls.

Petroleum-based fuels, with few exceptions, are highly complex mixtures of hundreds of distinct components from light butanes to increasingly heavy oils. For decades, distillation curves have been one of the most widely accepted ways of characterizing a fuel. The curve charts the percentage of the total mixture that has evaporated as the temperature of a sample is slowly heated. The curve holds a wealth of information--not just the basic makeup of the fuel, but also indicators as to how it will perform. Engine starting ability, fuel system icing, vapor lock, fuel injection scheduling, fuel auto-ignition, hot- and cold-weather performance, and exhaust emissions all have been correlated with features of the distillation curve. The data are important both for quality control at refineries and the design of specialty high-performance fuels.

For all its utility, there are serious problems with the common method for measuring a distillation curve in industry, based on an old ASTM standard called D-86. The method is subject to large uncertainties and systematic errors that make it difficult or impossible to relate the test results to thermodynamic theory used in developing modern fuels and engines. NIST researchers added an additional temperature sensor and made other modifications, decreasing the random uncertainty in the temperature measurement and control from a few degrees to 0.05 degree and eliminating a number of systematic errors. They also added the capability to do a composition analysis of each boiling "fraction," which can provide vital insights into fuel behavior and pinpoint batch-to-batch differences to help diagnose production problems.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>