Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A gene predisposing to pituitary tumors identified

A recent Finnish study identifies a low-penetrance gene defect which predisposes carriers to intracranial tumors called pituitary adenomas. In particular individuals carrying the gene defect are susceptible to such tumors which secrete growth hormone.

Excess of growth hormone results in conditions called acromegaly and gigantism. Identification of this gene defect using DNA-chip technologies is an example how genetic research can tackle more and more demanding tasks, such as identification of predisposition genes conferring a low absolute but high relative risk. The results are published in the May 26 issue of the journal Science.

The research group, lead by professor Lauri Aaltonen (University of Helsinki, Finland) and Dr Outi Vierimaa (Oulu University Hospital, Finland) providing the initial observations leading to the investigations, aimed at unravelling the genetic basis of susceptibility to pituitary adenomas. Pituitary adenomas are common benign neoplasms, accounting for approximately 15 % of intracranial tumors.

Most common hormone-secreting pituitary tumor types oversecrete prolactin or growth hormone (GH), which together with local compressive effects account for their substantial morbidity. Oversecretion of GH causes acromegaly or gigantism. Acromegaly is characterized by coarse facial features, protruding jaw, and enlarged extremities. The potentially severe symptoms of untreated acromegaly, develop slowly and the condition is difficult to diagnose early. Gigantism refers to excessive linear growth occurring due to GH oversecretion when epiphyseal growth plates are still open, in childhood and adolescence. Genetic predisposition to pituitary tumors has been believed to be rare.

The researchers detected three clusters of familial pituitary adenoma in Northern Finland. Genealogy data reaching back to 1700’s was available. Two first clusters could be linked by genealogy. The researchers hypothesized that a previously uncharacterized form of low-penetrance pituitary adenoma predisposition (PAP) would contribute to the disease burden in the region. The researchers had previously characterized a population based cohort diagnosed with GH secreting pituitary adenoma (somatotropinoma) in Oulu University Hospital (OUH). These data were linked to the pedigree information, to identify additional affected distant relatives. The PAP phenotype – very low penetrance susceptibility to somatotropinoma and prolactinoma - did not fit well to any of the known familial pituitary adenoma syndromes. These syndromes are defined by familial occurrence of the disease, and the low penetrance of PAP appeared unique. Low penetrance means hereditary predisposition which relatively rarely leads to actual disease – but which may cause much more effect on population level than high-penetrance disease susceptibility which typically is very uncommon.

Utilizing modern chip-based technologies the research group identified mutations in the AIP gene as the underlying cause. Further work on the functional role of this gene should prove informative in revealing key cellular processes involved in genesis of pituitary adenomas, including potential drug targets.

It has not been previously realized that genetic predisposition to pituitary adenoma, in particular GH oversecreting type, can account for a significant proportion of cases. The study not only reveals this aspect of the disease, but also provides molecular tools for efficient identification of predisposed individuals. Without pre-existing risk awareness, the patients are typically diagnosed after years of delay, leading to significant morbidity. Simple tools for efficient clinical follow-up of predisposed individuals are available, such as monitoring GH in blood samples.

In a general sense, the results suggest that inherited tumor susceptibility may be more common than previously thought. The identification of the PAP gene indicates that with the new DNA-chip based technologies it is possible to identify the causative genetic defects in the low-penetrance conditions even in the absence of a strong family history.

Lauri A. Aaltonen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>