Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plague agent helps UT Southwestern researchers find novel signaling system in cells

29.05.2006
The bacterium that causes bubonic plague would seem unlikely to help medical scientists, but researchers at UT Southwestern Medical Center have harnessed it to uncover a new regulatory mechanism that inhibits the immune system.

the Yersinia bacteria, known to cause plague and gastroenteritis, contain a small molecule, called a virulence factor, that the researchers have found modifies host enzymes critical to normal functioning.

"This type of modification has never been seen in cells and presents a new paradigm for how cells may regulate signaling," said Dr. Kim Orth, assistant professor of molecular biology and senior author of the study appearing in the May 26 edition of Science.

"Yersinia is a nasty pathogen that uses an arsenal of virulence factors to cause disease," she said.

When a cell is infected with a bacterial pathogen, it activates a chain of reactions involving enzymes. One enzyme adds a group of atoms containing phosphorus — called a phosphate group — to another enzyme, a process called phosphorylation, which spurs that enzyme to add a phosphate group to yet another enzyme, and so on. These "cascading" events trigger an appropriate immune response.

Yersinia, however, has the ability to prevent its host from mounting the response, enabling the bacteria to survive and multiply.

The researchers found that one of the Yersinia outer proteins, called YopJ, cripples these cascades by adding a small molecule called an acetyl group to two key sites on a host enzyme where the phosphate groups are usually added.

Because the host’s enzymes are modified by acetyl groups, they can no longer be activated by phosphate groups, and the enzymatic cascade critical for triggering an innate immune response is not activated.

The internal signaling that YopJ affects is common to many species, from yeast to mammals. In addition, other pathogens that attack animals and plants use proteins that are similar to YopJ.

The research is not geared toward finding a cure for plague, which affects about a dozen people in the United States a year and is treatable with antibiotics. Instead, the scientists are working to find out how the pathogen disrupts the immune system and to understand the machinery critical for stimulating an immune response.

"There are many virulence factors used by bacterial pathogens to co-opt the host signaling molecules," Dr. Orth said. "These virulence factors affect central signaling machinery, and we want to understand how they are doing it."

Understanding the relationship between the pathogens and the hosts will help researchers uncover critical steps in how host cells normally operate, Dr. Orth said.

"The next step is to see whether the addition of acetyl groups to key sites on enzymes during cellular signaling is normal for animal and plant cells, and if so, under what circumstances," said Dr. Orth.

Other UT Southwestern researchers involved in the study were first author Sohini Mukherjee, student research assistant in molecular biology; Gladys Keitany, research assistant in molecular biology; Dr. Yan Li, instructor of biochemistry; Yong Wang, research assistant in molecular biology; Dr. Haydn Ball, assistant professor of biochemistry; and Dr. Elizabeth Goldsmith, professor of biochemistry.

The work was supported by the National Institute of Allergy and Infectious Diseases, the Beckman Foundation and the Welch Foundation.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>