Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

If the chemistry is right … you might remember this

29.05.2006
New findings in nerve communication

If the chemistry is right … you might remember this

A young Australian scientist has made an important discovery about how brain cells communicate. This finding is central to understanding all brain function – from laying down memory to being able to walk

The groundbreaking research has been published in the latest edition of world-leading journal Nature Neuroscience.

Victor Anggono, a PhD student at the Children’s Medical Research Institute (CMRI), set out to identify the molecular partners of a key protein called dynamin, and how their partnership allows neurons to send messages .

The result was astounding. A protein called syndapin, previously thought to have no major role in nerve communication, was proven to be the molecule that simultaneously works with dynamin to allow the transmission of messages between nerve cells.

The brain functions by sending chemical messages between nerves. The messages, or neurotranmsitters, are held in tiny packages at the nerve terminal where they are released to send a signal. The packages then return to the cell and are re-filled so that brain function can continue.

In collaboration with researchers from the University of Edinburgh further studies have revealed that by blocking the interaction of these two proteins nerve communication shuts down.

’The partnership between dynamin and syndapin is crucial for the continous cycle of neurotransmission. This makes syndpain a very specific target for medicines that could treat conditions where there is an overload of nerve activity, such as during a seizures,’ said Dr Phil Robinson leader of the research at the CMRI.

The relationship between dynamin and syndapin is also crucial to understanding other processes where there is a high level of brain activity and nerve transmission, such as when forming memories and during learning.

Dr Robinson says, ’A discovery like this will be vital for future research into many neurological disorders, such as epilepsy, conditions of memory loss and schizophrenia. It is only through research like this, that medical science can now target specific problems and develop improved treatments.’

Dr Phillip Robinson | EurekAlert!
Further information:
http://www.usyd.edu.au

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>