Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk research suggests the existence of specialized neurons that distinguish swagger from sway

29.05.2006
It doesn’t take John Wayne’s deliberate, pigeon-toed swagger or Marilyn Monroe’s famously wiggly sway to judge a person’s gender based on the way they move. People are astonishingly accurate when asked to judge the gender of walking human figures, even when they are represented by 15 small dots of light attached to major joints of the body.

And not only that, when human observers watched the walking motion of a male so-called "point light walker," they were more sensitive to the female attributes when watching the next figure in the sequence. This suggests that the human brain relies on specialized neurons that tell gender based on gait, report researchers at the Salk Institute for Biological Studies in the May 21 advance online edition of Nature Neuroscience.

"Our judgment of gender can adapt within seconds," says senior author Gene Stoner, a neuroscientist in the Vision Center Laboratory at the Salk Institute. "The gaits of males and females may vary geographically or culturally and this mechanism allows us to adapt very quickly to local ways of walking," he adds.

How humans move reflects, in part, gender-specific differences in shape such hip-to-waist ratio and the like. Such inherent differences in gait might then be exaggerated by an individual to emphasize their gender. "Our new data suggests that there are neurons selective for gender based on these motion cues and that they adjust their selectivity on the fly," Stoner explains.

Although much work has been done on how the brain represents so-called low-level features, such as "redness" or "left-moving," scientists have been unable to put their finger on more abstract concepts such as gender. "We wanted to know whether gender is represented in a similar way to low-level visual features such as color, or if it is a more semantic concept such as good and evil," says experimental psychologist and first author Heather Jordan, a former post-doc in the Vision Center Laboratory and now an assistant professor at York University in Toronto.

Individual neurons in the visual cortex are finely tuned to certain attributes of visible objects such as the color red, a certain shape or objects moving in a specific direction. These specialized neurons reveal their existence through a telltale effect called adaptation. For example, if you stare at a red patch and then look at a neutral color you tend to see green. This "adaptation" reflects a mechanism in the brain that exaggerates differences between objects to increase the sensitivity and optimize the output of individual neurons.

"In the past, when adaptation in behavior was observed for specific features, neurophysiologists have subsequently been able to find individual neurons which fire only when they encounter this feature," says Jordan. "We think that the same is true for maleness and femaleness - that there are neurons in the brain that fire if, and only if, they ’see’ a male gait and others that fire if, and only if, they ’see’ a female gait, explains Jordan.

"We know lots about individual neurons that are sensitive to the direction of moving objects. But in this case, motion provides information about the structure of what is moving," says Stoner.

For their experiments, the Salk researchers morphed the gait of averaged male and female walkers -- resulting in varying degrees of "maleness" and "femaleness" .When the figure consisted of less than 49 percent male contribution, the observers reported seeing a figure that appeared female. Once there was more than 49 percent maleness in the figure, they reported seeing a figure that was mostly male. But these numbers were not stable: Viewing the gait of one gender biased judgments of subsequent gaits toward the opposite gender. "If you want to appear particularly feminine you should walk behind a very masculine-looking male and vice-versa," jokes Jordan.

In addition to Stoner and Jordan, the Salk research team included neuroscientist Mayzar Fallah, a former post-doc in the Systems Neurobiology Laboratory and now an assistant professor at York University in Toronto.

Mauricio Minotta | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>