Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Salk research suggests the existence of specialized neurons that distinguish swagger from sway

It doesn’t take John Wayne’s deliberate, pigeon-toed swagger or Marilyn Monroe’s famously wiggly sway to judge a person’s gender based on the way they move. People are astonishingly accurate when asked to judge the gender of walking human figures, even when they are represented by 15 small dots of light attached to major joints of the body.

And not only that, when human observers watched the walking motion of a male so-called "point light walker," they were more sensitive to the female attributes when watching the next figure in the sequence. This suggests that the human brain relies on specialized neurons that tell gender based on gait, report researchers at the Salk Institute for Biological Studies in the May 21 advance online edition of Nature Neuroscience.

"Our judgment of gender can adapt within seconds," says senior author Gene Stoner, a neuroscientist in the Vision Center Laboratory at the Salk Institute. "The gaits of males and females may vary geographically or culturally and this mechanism allows us to adapt very quickly to local ways of walking," he adds.

How humans move reflects, in part, gender-specific differences in shape such hip-to-waist ratio and the like. Such inherent differences in gait might then be exaggerated by an individual to emphasize their gender. "Our new data suggests that there are neurons selective for gender based on these motion cues and that they adjust their selectivity on the fly," Stoner explains.

Although much work has been done on how the brain represents so-called low-level features, such as "redness" or "left-moving," scientists have been unable to put their finger on more abstract concepts such as gender. "We wanted to know whether gender is represented in a similar way to low-level visual features such as color, or if it is a more semantic concept such as good and evil," says experimental psychologist and first author Heather Jordan, a former post-doc in the Vision Center Laboratory and now an assistant professor at York University in Toronto.

Individual neurons in the visual cortex are finely tuned to certain attributes of visible objects such as the color red, a certain shape or objects moving in a specific direction. These specialized neurons reveal their existence through a telltale effect called adaptation. For example, if you stare at a red patch and then look at a neutral color you tend to see green. This "adaptation" reflects a mechanism in the brain that exaggerates differences between objects to increase the sensitivity and optimize the output of individual neurons.

"In the past, when adaptation in behavior was observed for specific features, neurophysiologists have subsequently been able to find individual neurons which fire only when they encounter this feature," says Jordan. "We think that the same is true for maleness and femaleness - that there are neurons in the brain that fire if, and only if, they ’see’ a male gait and others that fire if, and only if, they ’see’ a female gait, explains Jordan.

"We know lots about individual neurons that are sensitive to the direction of moving objects. But in this case, motion provides information about the structure of what is moving," says Stoner.

For their experiments, the Salk researchers morphed the gait of averaged male and female walkers -- resulting in varying degrees of "maleness" and "femaleness" .When the figure consisted of less than 49 percent male contribution, the observers reported seeing a figure that appeared female. Once there was more than 49 percent maleness in the figure, they reported seeing a figure that was mostly male. But these numbers were not stable: Viewing the gait of one gender biased judgments of subsequent gaits toward the opposite gender. "If you want to appear particularly feminine you should walk behind a very masculine-looking male and vice-versa," jokes Jordan.

In addition to Stoner and Jordan, the Salk research team included neuroscientist Mayzar Fallah, a former post-doc in the Systems Neurobiology Laboratory and now an assistant professor at York University in Toronto.

Mauricio Minotta | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>