Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk research suggests the existence of specialized neurons that distinguish swagger from sway

29.05.2006
It doesn’t take John Wayne’s deliberate, pigeon-toed swagger or Marilyn Monroe’s famously wiggly sway to judge a person’s gender based on the way they move. People are astonishingly accurate when asked to judge the gender of walking human figures, even when they are represented by 15 small dots of light attached to major joints of the body.

And not only that, when human observers watched the walking motion of a male so-called "point light walker," they were more sensitive to the female attributes when watching the next figure in the sequence. This suggests that the human brain relies on specialized neurons that tell gender based on gait, report researchers at the Salk Institute for Biological Studies in the May 21 advance online edition of Nature Neuroscience.

"Our judgment of gender can adapt within seconds," says senior author Gene Stoner, a neuroscientist in the Vision Center Laboratory at the Salk Institute. "The gaits of males and females may vary geographically or culturally and this mechanism allows us to adapt very quickly to local ways of walking," he adds.

How humans move reflects, in part, gender-specific differences in shape such hip-to-waist ratio and the like. Such inherent differences in gait might then be exaggerated by an individual to emphasize their gender. "Our new data suggests that there are neurons selective for gender based on these motion cues and that they adjust their selectivity on the fly," Stoner explains.

Although much work has been done on how the brain represents so-called low-level features, such as "redness" or "left-moving," scientists have been unable to put their finger on more abstract concepts such as gender. "We wanted to know whether gender is represented in a similar way to low-level visual features such as color, or if it is a more semantic concept such as good and evil," says experimental psychologist and first author Heather Jordan, a former post-doc in the Vision Center Laboratory and now an assistant professor at York University in Toronto.

Individual neurons in the visual cortex are finely tuned to certain attributes of visible objects such as the color red, a certain shape or objects moving in a specific direction. These specialized neurons reveal their existence through a telltale effect called adaptation. For example, if you stare at a red patch and then look at a neutral color you tend to see green. This "adaptation" reflects a mechanism in the brain that exaggerates differences between objects to increase the sensitivity and optimize the output of individual neurons.

"In the past, when adaptation in behavior was observed for specific features, neurophysiologists have subsequently been able to find individual neurons which fire only when they encounter this feature," says Jordan. "We think that the same is true for maleness and femaleness - that there are neurons in the brain that fire if, and only if, they ’see’ a male gait and others that fire if, and only if, they ’see’ a female gait, explains Jordan.

"We know lots about individual neurons that are sensitive to the direction of moving objects. But in this case, motion provides information about the structure of what is moving," says Stoner.

For their experiments, the Salk researchers morphed the gait of averaged male and female walkers -- resulting in varying degrees of "maleness" and "femaleness" .When the figure consisted of less than 49 percent male contribution, the observers reported seeing a figure that appeared female. Once there was more than 49 percent maleness in the figure, they reported seeing a figure that was mostly male. But these numbers were not stable: Viewing the gait of one gender biased judgments of subsequent gaits toward the opposite gender. "If you want to appear particularly feminine you should walk behind a very masculine-looking male and vice-versa," jokes Jordan.

In addition to Stoner and Jordan, the Salk research team included neuroscientist Mayzar Fallah, a former post-doc in the Systems Neurobiology Laboratory and now an assistant professor at York University in Toronto.

Mauricio Minotta | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>