Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene predisposing to pituitary tumors identified

26.05.2006
A recent Finnish study identifies a low-penetrance gene defect which predisposes carriers to intracranial tumors called pituitary adenomas. In particular individuals carrying the gene defect are susceptible to such tumors which secrete growth hormone. Excess of growth hormone results in conditions called acromegaly and gigantism.

Identification of this gene defect using DNA-chip technologies is an example how genetic research can tackle more and more demanding tasks, such as identification of predisposition genes conferring a low absolute but high relative risk. The results are published in the May 26 issue of the journal Science.

The research group, lead by professor Lauri Aaltonen (University of Helsinki, Finland) and Dr Outi Vierimaa (Oulu University Hospital, Finland) providing the initial observations leading to the investigations, aimed at unravelling the genetic basis of susceptibility to pituitary adenomas. Pituitary adenomas are common benign neoplasms, accounting for approximately 15 % of intracranial tumors.

Most common hormone-secreting pituitary tumor types oversecrete prolactin or growth hormone (GH), which together with local compressive effects account for their substantial morbidity. Oversecretion of GH causes acromegaly or gigantism. Acromegaly is characterized by coarse facial features, protruding jaw, and enlarged extremities. The potentially severe symptoms of untreated acromegaly, develop slowly and the condition is difficult to diagnose early. Gigantism refers to excessive linear growth occurring due to GH oversecretion when epiphyseal growth plates are still open, in childhood and adolescence. Genetic predisposition to pituitary tumors has been believed to be rare.

The researchers detected three clusters of familial pituitary adenoma in Northern Finland. Genealogy data reaching back to 1700’s was available. Two first clusters could be linked by genealogy. The researchers hypothesized that a previously uncharacterized form of low-penetrance pituitary adenoma predisposition (PAP) would contribute to the disease burden in the region. The researchers had previously characterized a population based cohort diagnosed with GH secreting pituitary adenoma (somatotropinoma) in Oulu University Hospital (OUH).

These data were linked to the pedigree information, to identify additional affected distant relatives. The PAP phenotype – very low penetrance susceptibility to somatotropinoma and prolactinoma - did not fit well to any of the known familial pituitary adenoma syndromes. These syndromes are defined by familial occurrence of the disease, and the low penetrance of PAP appeared unique. Low penetrance means hereditary predisposition which relatively rarely leads to actual disease – but which may cause much more effect on population level than high-penetrance disease susceptibility which typically is very uncommon.

Utilizing modern chip-based technologies the research group identified mutations in the AIP gene as the underlying cause. Further work on the functional role of this gene should prove informative in revealing key cellular processes involved in genesis of pituitary adenomas, including potential drug targets.

It has not been previously realized that genetic predisposition to pituitary adenoma, in particular GH oversecreting type, can account for a significant proportion of cases. The study not only reveals this aspect of the disease, but also provides molecular tools for efficient identification of predisposed individuals. Without pre-existing risk awareness, the patients are typically diagnosed after years of delay, leading to significant morbidity. Simple tools for efficient clinical follow-up of predisposed individuals are available, such as monitoring GH in blood samples.

In a general sense, the results suggest that inherited tumor susceptibility may be more common than previously thought. The identification of the PAP gene indicates that with the new DNA-chip based technologies it is possible to identify the causative genetic defects in the low-penetrance conditions even in the absence of a strong family history.

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>