Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A gene predisposing to pituitary tumors identified

A recent Finnish study identifies a low-penetrance gene defect which predisposes carriers to intracranial tumors called pituitary adenomas. In particular individuals carrying the gene defect are susceptible to such tumors which secrete growth hormone. Excess of growth hormone results in conditions called acromegaly and gigantism.

Identification of this gene defect using DNA-chip technologies is an example how genetic research can tackle more and more demanding tasks, such as identification of predisposition genes conferring a low absolute but high relative risk. The results are published in the May 26 issue of the journal Science.

The research group, lead by professor Lauri Aaltonen (University of Helsinki, Finland) and Dr Outi Vierimaa (Oulu University Hospital, Finland) providing the initial observations leading to the investigations, aimed at unravelling the genetic basis of susceptibility to pituitary adenomas. Pituitary adenomas are common benign neoplasms, accounting for approximately 15 % of intracranial tumors.

Most common hormone-secreting pituitary tumor types oversecrete prolactin or growth hormone (GH), which together with local compressive effects account for their substantial morbidity. Oversecretion of GH causes acromegaly or gigantism. Acromegaly is characterized by coarse facial features, protruding jaw, and enlarged extremities. The potentially severe symptoms of untreated acromegaly, develop slowly and the condition is difficult to diagnose early. Gigantism refers to excessive linear growth occurring due to GH oversecretion when epiphyseal growth plates are still open, in childhood and adolescence. Genetic predisposition to pituitary tumors has been believed to be rare.

The researchers detected three clusters of familial pituitary adenoma in Northern Finland. Genealogy data reaching back to 1700’s was available. Two first clusters could be linked by genealogy. The researchers hypothesized that a previously uncharacterized form of low-penetrance pituitary adenoma predisposition (PAP) would contribute to the disease burden in the region. The researchers had previously characterized a population based cohort diagnosed with GH secreting pituitary adenoma (somatotropinoma) in Oulu University Hospital (OUH).

These data were linked to the pedigree information, to identify additional affected distant relatives. The PAP phenotype – very low penetrance susceptibility to somatotropinoma and prolactinoma - did not fit well to any of the known familial pituitary adenoma syndromes. These syndromes are defined by familial occurrence of the disease, and the low penetrance of PAP appeared unique. Low penetrance means hereditary predisposition which relatively rarely leads to actual disease – but which may cause much more effect on population level than high-penetrance disease susceptibility which typically is very uncommon.

Utilizing modern chip-based technologies the research group identified mutations in the AIP gene as the underlying cause. Further work on the functional role of this gene should prove informative in revealing key cellular processes involved in genesis of pituitary adenomas, including potential drug targets.

It has not been previously realized that genetic predisposition to pituitary adenoma, in particular GH oversecreting type, can account for a significant proportion of cases. The study not only reveals this aspect of the disease, but also provides molecular tools for efficient identification of predisposed individuals. Without pre-existing risk awareness, the patients are typically diagnosed after years of delay, leading to significant morbidity. Simple tools for efficient clinical follow-up of predisposed individuals are available, such as monitoring GH in blood samples.

In a general sense, the results suggest that inherited tumor susceptibility may be more common than previously thought. The identification of the PAP gene indicates that with the new DNA-chip based technologies it is possible to identify the causative genetic defects in the low-penetrance conditions even in the absence of a strong family history.

Paivi Lehtinen | alfa
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>