Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic test for breast cancer

24.05.2006
Researchers at Montefiore Medical Center are leading a nationwide clinical trial to determine whether a new genetic test can be used to personalize treatment for early-stage breast cancer.

"By using a molecular diagnostic test to assess whether a breast tumor will respond to chemotherapy, we’re hoping to more precisely identify which patients can be adequately treated with hormonal therapy alone and which patients will truly benefit if chemotherapy is added to the treatment," said Joseph Sparano, MD, who directs the Breast Evaluation Center at the Montefiore-Einstein Cancer Center. "With better individualized treatment, we can spare women the side effects of chemotherapy where it is unnecessary."

Dr. Sparano is the lead investigator for the clinical trial, called TAILORx (an acronym for Trial Assigning Individualized Options for Treatment). The study, sponsored by the National Cancer Institute, will enroll about 10,000 women with breast cancer at more than 900 institutions throughout the United States and Canada.

Breast cancer is the most frequently diagnosed cancer in women, with an estimated 235,000 new cases of invasive breast cancer expected in the United States and Canada in 2006. Nearly 140,000 of these women will have estrogen receptor-positive breast cancer that has not yet spread to the lymph nodes.

The standard treatment is surgery to remove the tumor, plus radiation and hormonal therapy, which cures about 80 to 85 percent of patients. Adding chemotherapy can further reduce the risk of recurrence by about 25 percent, but it benefits only a small proportion of women.

Currently, most women with early-stage breast cancer are advised to undergo chemotherapy, yet it’s not clear that chemotherapy is worthwhile or even necessary in all these cases," Dr. Sparano said.

The researchers will use OncotypeDXTM, a modern diagnostic test developed by Genomic Health, Inc., in Redwood, Calif., in collaboration with the National Surgical Adjuvant Breast and Bowel Project, a network of cancer research professionals. The test identifies which of 21 specific genes are turned on or off in the tumor. This genetic assessment estimates a patient’s risk of recurrence more precisely than standard clinical characteristics, such as tumor size and grade. It also helps predict whether a patient will benefit from chemotherapy.

"This test yields what is called a recurrence score. For about 55 percent of women, the recurrence score is greater than 25 or less than 11. In these cases, the test clearly indicates the most effective therapy: a combination of chemotherapy and hormones for women with high scores, and hormones alone for women with low scores," Dr. Sparano said. "But about 45 percent of women receive scores that range from 11 to 25, where the treatment path is not so clear. Our study is designed to resolve this uncertainty."

Women participating in the TAILORx trial will be assigned to one of three groups depending on their recurrence score. If the score is more than 25, women will receive chemotherapy plus hormonal therapy, the current standard of care. If it is less than 11, they will receive hormonal therapy alone. If the recurrence score is between 11 and 25, women will be randomized to receive either hormonal therapy or hormonal therapy together with chemotherapy.

"With this trial, we’re taking a big leap forward in integrating modern molecular diagnostic testing into clinical decision-making in order to individualize cancer treatments," Dr. Sparano said.

Sharon Butler | EurekAlert!
Further information:
http://www.rubenstein.com/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>