Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover new clues to limb formation (and loss) in some sea mammals

24.05.2006
Findings help solve mystery of whales’ missing legs

Researchers from the Northeastern Ohio Universities College of Medicine have revealed the genetic basis behind one of the best-documented examples of evolutionary change in the fossil record: how whales lost their hind limbs.

Writing in this week’s Proceedings of the National Academy of Sciences (PNAS), Hans Thewissen and his colleagues report that ancient whales--four-footed land animals not unlike large modern dogs--evolved into graceful, streamlined swimmers through a series of small genetic changes during the whales’ embryonic development.

"Their research has implications for how evolution acts to create dramatic changes in an organism’s body," said Richard Lane, program director in the National Science Foundation (NSF)’s Division of Earth Sciences, which funded the research.

"The findings emphasize the synergistic role traditional paleontology and evolutionary and developmental biology play at the frontiers of the evolutionary sciences," said Lane.

Thewissen and his colleagues began by exploring the embryonic development of whales’ cousins, the dolphins. These creatures are intriguing because for a brief time during development they do sprout hind limbs, which quickly vanish again as the embryos reach the second month in a gestation period that lasts about 12 months.

Why? In most mammals, explains Thewissen, "a series of genes is at work at different times, delicately interacting to form a limb with muscles, bones, and skin. The genes are similar to the runners in a complex relay race, where a new runner cannot start without receiving a sign from a previous runner."

In dolphins, however, at least one of the genes drops out early in the race, disrupting the genes that were about to follow it. That causes the entire relay to collapse, ultimately leading to the regression of the animals’ hind limbs. By analyzing dolphin embryos, Thewissen showed that the dropout is a gene called "Sonic Hedgehog," which is important at several stages of limb formation.

"That’s why dolphins lose their ’legs,’" he says.

In whales, however, the story is more complex. Between 41 million and 50 million years ago, whales’ hind limbs did shrink greatly as the former land animals began a return to the sea. But their legs showed no change in the basic arrangement and number of bones, which proved that Sonic Hedgehog was still functioning. Its loss must have come later.

In short, "the dramatic loss of Sonic Hedgehog expression was not the genetic change that drove hind limb loss in whales," Lane said.

Instead, Thewissen and his colleagues conclude, whales’ hind limbs regressed over millions of years via "Darwinian microevolution": a step-by-step process occurring through small changes in a number of genes relatively late in development.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>