Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU primate center research suggests multiple ’body clocks’

24.05.2006
Research conducted at Oregon Health & Science University suggests that contrary to popular belief, the body has more than one "body clock." The previously known master body clock resides in a part of the brain called the suprachiasmatic nucleus (SCN).
Researchers at OHSU’s Oregon National Primate Research Center (ONPRC) have now revealed the existence of a secondary clock-like mechanism associated with the adrenal gland. The research also suggests a high likelihood that additional clocks exist in the body. The study results are printed in the current edition of the journal Molecular Endocrinology.

"We’re all familiar with the idea that the body has a master clock that controls sleep-wake cycles. In fact, most of us have witnessed the impacts of this clock in the form of jet lag where it takes the body a number of days to adjust to a new time schedule following a long flight," explained Henryk Urbanski, Ph.D., senior author of the study and a senior scientist at ONPRC. "Our latest research suggests that a separate but likely related clock resides in the adrenal gland. The adrenal gland is involved in several important body functions, such as body temperature regulation, metabolism, mood, stress response and reproduction. The research also suggests that other peripheral clocks reside throughout the body and that these clocks are perhaps interconnected."

To conduct the research, scientists studied adrenal gland function in rhesus macaque monkeys which is very similar to human adrenal gland function. Specifically, researchers measured gene expression in the adrenal gland of monkeys during a 24-hour period (six times a day, four-hour intervals). In analyzing this information, researchers identified 322 genes in the adrenal gland with functions that varied rhythmically over a 24-hour period, meaning that each gene’s function peaked and diminished at the same time each day. Interestingly, the scientists also noted that a subgroup of these 322 genes also exist in the SCN – the home of the body’s master body clock. This suggests that the adrenal gland has its own timing mechanism that is related to, but separate from, the SCN body clock.

"Of course, different genes peaked in function at different times of the day," explained Dario Lemos, an OHSU graduate student in the Urbanski lab and first author of the study. "For instance, genes controlling catecholamine secretion were more active in the day with function greatly decreasing at night. Catecholamines are involved in many important body functions, such as stress and mood."

This research provides important new information regarding the complex, rhythmic, 24-hour functions of the body. The research may also impact current therapies for a variety of diseases. For instance, data gathered in this study and future studies may suggest that certain therapies be delivered at certain times to synchronize with normal body functions controlled by body clocks.

"One example is testosterone replacement, a common treatment for certain disorders in males such as sexual dysfunction and depression," explained Urbanski. "Patients receiving testosterone late in the day often complain of sleep loss. This is likely due to the fact that in healthy people, testosterone levels are lower in the afternoon and evening. As more data is gathered about body clock functions in our lab and others, we will likely learn of a specific window of time during the day where testosterone therapy is effective, but less disruptive for patients."

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>