Research gives new insights in gene behaviour

Dr Jonathan Chubb, Principal Investigator in the Division of Cell and Developmental Biology in the School of Life Sciences at the University of Dundee, in collaboration with researchers in New York, has made a major advance in our understanding of gene function, as reported in the new issue of the journal “Current Biology” on 23rd May.

After several decades of experimentation demonstrating the importance of gene action to human diseases and normal bodily function, this new advance allows researchers, for the first time, to directly watch the behaviour of a single gene.

Genes must operate at specific times and in specific parts of our bodies, to achieve normal bodily function. When genes do not operate in the correct part of the body or fail to operate at the correct time, this can cause diseases. Cancer is one of the many diseases resulting from improper gene function.

Using an extremely powerful microscope to look inside living cells, Dr Chubb and his colleagues were able to observe a single gene as it turned on and off.

The picture (also attached) shows a movie of a gene turning on and off. The movie is of a cell and in some frames the cell has a bright spot. Chubb and his co-workers used a fluorescent marker that sticks to the gene only when it is active. Under a microscope, this fluorescent marker appears as a spot. The spot is present, then disappears, then appears again.

Dr Chubb likens a gene to a thermostat: “The central heating in a home is not on all the time- that would be inefficient and would overheat the house. The solution is to have a thermostat, which injects a little bit of heat when it is required then turns off again. The cell is similar- it needs the gene to be turned on, but too much activity at the wrong time can be a problem, so the solution is to have small bursts of activity.”

The researchers believe that their technique will be a powerful new method for understanding how genes misbehave in human diseases, such as cancer and Alzheimers. The ability to watch a cell as it decides to activate or inactivate a gene will provide unrivalled insight into how this process goes wrong in these and other diseases.

Dr Chubb’s research is funded by the Medical Research Council and his collaborators by the National Institutes of Health (NIH), USA. Dr Chubb took up his position in the School of Life Sciences in October 2005 having arrived from the Albert Einstein College of Medicine, New York, USA.

Media Contact

Roddy Isles alfa

More Information:

http://www.dundee.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors