Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research gives new insights in gene behaviour

24.05.2006
Researchers at the University of Dundee have made a major breakthrough in observing how our genes function, a development which could offer powerful new methods for understanding how genes misbehave in human diseases such as cancer and Alzheimers.

Dr Jonathan Chubb, Principal Investigator in the Division of Cell and Developmental Biology in the School of Life Sciences at the University of Dundee, in collaboration with researchers in New York, has made a major advance in our understanding of gene function, as reported in the new issue of the journal "Current Biology" on 23rd May.

After several decades of experimentation demonstrating the importance of gene action to human diseases and normal bodily function, this new advance allows researchers, for the first time, to directly watch the behaviour of a single gene.

Genes must operate at specific times and in specific parts of our bodies, to achieve normal bodily function. When genes do not operate in the correct part of the body or fail to operate at the correct time, this can cause diseases. Cancer is one of the many diseases resulting from improper gene function.

Using an extremely powerful microscope to look inside living cells, Dr Chubb and his colleagues were able to observe a single gene as it turned on and off.

The picture (also attached) shows a movie of a gene turning on and off. The movie is of a cell and in some frames the cell has a bright spot. Chubb and his co-workers used a fluorescent marker that sticks to the gene only when it is active. Under a microscope, this fluorescent marker appears as a spot. The spot is present, then disappears, then appears again.

Dr Chubb likens a gene to a thermostat: "The central heating in a home is not on all the time- that would be inefficient and would overheat the house. The solution is to have a thermostat, which injects a little bit of heat when it is required then turns off again. The cell is similar- it needs the gene to be turned on, but too much activity at the wrong time can be a problem, so the solution is to have small bursts of activity."

The researchers believe that their technique will be a powerful new method for understanding how genes misbehave in human diseases, such as cancer and Alzheimers. The ability to watch a cell as it decides to activate or inactivate a gene will provide unrivalled insight into how this process goes wrong in these and other diseases.

Dr Chubb’s research is funded by the Medical Research Council and his collaborators by the National Institutes of Health (NIH), USA. Dr Chubb took up his position in the School of Life Sciences in October 2005 having arrived from the Albert Einstein College of Medicine, New York, USA.

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>