Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research gives new insights in gene behaviour

24.05.2006
Researchers at the University of Dundee have made a major breakthrough in observing how our genes function, a development which could offer powerful new methods for understanding how genes misbehave in human diseases such as cancer and Alzheimers.

Dr Jonathan Chubb, Principal Investigator in the Division of Cell and Developmental Biology in the School of Life Sciences at the University of Dundee, in collaboration with researchers in New York, has made a major advance in our understanding of gene function, as reported in the new issue of the journal "Current Biology" on 23rd May.

After several decades of experimentation demonstrating the importance of gene action to human diseases and normal bodily function, this new advance allows researchers, for the first time, to directly watch the behaviour of a single gene.

Genes must operate at specific times and in specific parts of our bodies, to achieve normal bodily function. When genes do not operate in the correct part of the body or fail to operate at the correct time, this can cause diseases. Cancer is one of the many diseases resulting from improper gene function.

Using an extremely powerful microscope to look inside living cells, Dr Chubb and his colleagues were able to observe a single gene as it turned on and off.

The picture (also attached) shows a movie of a gene turning on and off. The movie is of a cell and in some frames the cell has a bright spot. Chubb and his co-workers used a fluorescent marker that sticks to the gene only when it is active. Under a microscope, this fluorescent marker appears as a spot. The spot is present, then disappears, then appears again.

Dr Chubb likens a gene to a thermostat: "The central heating in a home is not on all the time- that would be inefficient and would overheat the house. The solution is to have a thermostat, which injects a little bit of heat when it is required then turns off again. The cell is similar- it needs the gene to be turned on, but too much activity at the wrong time can be a problem, so the solution is to have small bursts of activity."

The researchers believe that their technique will be a powerful new method for understanding how genes misbehave in human diseases, such as cancer and Alzheimers. The ability to watch a cell as it decides to activate or inactivate a gene will provide unrivalled insight into how this process goes wrong in these and other diseases.

Dr Chubb’s research is funded by the Medical Research Council and his collaborators by the National Institutes of Health (NIH), USA. Dr Chubb took up his position in the School of Life Sciences in October 2005 having arrived from the Albert Einstein College of Medicine, New York, USA.

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>