Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smell rules fire ants

16.11.2001


One gene controls whether a persistent pest serves one or many queens.


Revolting smell: scent may make fire ants kill impostor queens.
© USEPA



A protein that spots smell controls the power structure of fire ant colonies, Michael Krieger and Kenneth Ross of the University of Georgia, Athens, have discovered1. One form of the protein leads to nests with several queens living in harmony. The other leaves only one ruler.

Fire ants’ social life is of more than academic interest. The species (Solenopsis invicta) has spread from its South American homeland to become a serious pest in the Southern United States.


The ants drive out native insects and inflict painful bites on humans and livestock, doing damage worth hundreds of millions of dollars each year. Earlier this year fire ants appeared in Australia.

Multiple-queen colonies are a particular menace: nests can reach ten times the density of single-queen colonies in a given area.

Worker ants in multi-monarch colonies execute queens bearing the wrong genetic badge. Tapping into the signals that control this - with synthetic scents, for example - might allow us to trigger self-destructive infighting among the ants, speculates Laurent Keller, an evolutionary biologist at the University of Lausanne, Switzerland.

"Interfering with the process by which fire ants regulate queen number could wreak havoc in colonies," agrees Gene Robinson, who studies honey-bee genetics at the University of Illinois at Urbana-Champaign.

Causing a stink

Krieger and Ross have identified Gp-9, the gene that encodes the odour-detecting protein. Each ant has two copies of Gp-9, which can take one of two forms, known as B and b. Nests of BB ants contain one queen, those of Bb ants several; the bb form is lethal. Workers with Bb genes kill BB queens and workers in BB nests execute all queens except their sole ruler.

The identification of the protein is "a very important finding", says Keller. "We knew that a single gene was responsible for the two social forms, but we didn’t know if the protein that Gp-9 makes was important. This shows that it really does underlie the two forms - and it’s exactly the type of gene that you’d predict it to be."

Gp-9 controls queen number in three other ant species closely related to fire ants, Krieger and Ross have also found. This suggests that the genetic control originated several million years ago, and has persisted as a single ancestral species evolved and split into several. Krieger suspects that Gp-9 may be at work in many more species.

The leaders of multi-queen nests are less regal than queens that rule alone. They are smaller, and cannot establish new colonies unaided. Krieger thinks that workers tolerate the diminutive despots because they do not recognize them as royals.

References

  1. Krieger, M. J. B. & Ross, K. G. Identification of a major gene regulating complex social behaviour. Science in the press (2001).


  2. JOHN WHITFIELD | © Nature News Service
    Further information:
    http://www.nature.com/nsu/011122/011122-1.html

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>