Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smell rules fire ants


One gene controls whether a persistent pest serves one or many queens.

Revolting smell: scent may make fire ants kill impostor queens.

A protein that spots smell controls the power structure of fire ant colonies, Michael Krieger and Kenneth Ross of the University of Georgia, Athens, have discovered1. One form of the protein leads to nests with several queens living in harmony. The other leaves only one ruler.

Fire ants’ social life is of more than academic interest. The species (Solenopsis invicta) has spread from its South American homeland to become a serious pest in the Southern United States.

The ants drive out native insects and inflict painful bites on humans and livestock, doing damage worth hundreds of millions of dollars each year. Earlier this year fire ants appeared in Australia.

Multiple-queen colonies are a particular menace: nests can reach ten times the density of single-queen colonies in a given area.

Worker ants in multi-monarch colonies execute queens bearing the wrong genetic badge. Tapping into the signals that control this - with synthetic scents, for example - might allow us to trigger self-destructive infighting among the ants, speculates Laurent Keller, an evolutionary biologist at the University of Lausanne, Switzerland.

"Interfering with the process by which fire ants regulate queen number could wreak havoc in colonies," agrees Gene Robinson, who studies honey-bee genetics at the University of Illinois at Urbana-Champaign.

Causing a stink

Krieger and Ross have identified Gp-9, the gene that encodes the odour-detecting protein. Each ant has two copies of Gp-9, which can take one of two forms, known as B and b. Nests of BB ants contain one queen, those of Bb ants several; the bb form is lethal. Workers with Bb genes kill BB queens and workers in BB nests execute all queens except their sole ruler.

The identification of the protein is "a very important finding", says Keller. "We knew that a single gene was responsible for the two social forms, but we didn’t know if the protein that Gp-9 makes was important. This shows that it really does underlie the two forms - and it’s exactly the type of gene that you’d predict it to be."

Gp-9 controls queen number in three other ant species closely related to fire ants, Krieger and Ross have also found. This suggests that the genetic control originated several million years ago, and has persisted as a single ancestral species evolved and split into several. Krieger suspects that Gp-9 may be at work in many more species.

The leaders of multi-queen nests are less regal than queens that rule alone. They are smaller, and cannot establish new colonies unaided. Krieger thinks that workers tolerate the diminutive despots because they do not recognize them as royals.


  1. Krieger, M. J. B. & Ross, K. G. Identification of a major gene regulating complex social behaviour. Science in the press (2001).

  2. JOHN WHITFIELD | © Nature News Service
    Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>